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ABSTRACT 

Unattended ground sensors have a tremendous potential for providing information about battlefield 

targets, but for the most part this potential has been unrealized. The Marine Corps has recently 

fielded the Phase V seismic sensors of the Tactical Remote Sensor System (TRSS). These sensors 

are more sensitive than any of the previous versions, and their potential to provide more detailed 

target information is also greater than that of previous sensors. The current target classification 

and description model used by TRSS was developed for sensors which were placed in use in the 

early 1960's. The model is simple and deterministic in nature, and does not take into account the 

variance in the sensor system or the variance in sensor performance due to target type, target 

velocity, soil composition, or other potential factors. This thesis examines the sensor system 

variance and the effect of target type on sensor performance through field testing and develops an 

improved model for target description that accounts for these effects. The revised model takes 

advantage of the measured sensor characteristics to better describe the target, and provides the user 

with bounds that describe the credibility of the model's estimate. 
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EXECUTIVE SUMMARY 

Unattended ground sensors have a tremendous potential for providing information about 

battlefield targets, but for the most part this potential has been unrealized. The Marine Corps has 

recently fielded the Phase V sensors of the Tactical Remote Sensor System (TRSS), a new family 

of unattended ground sensors which includes seismic, infrared and magnetic sensors. The target 

classification and description model used by TRSS, called the Sensor Formula, was developed for 

use in the late 1960's. The model assumes fixed sensor detection distances based only on the 

target's classification type. It does not take into account the variance in sensor's detection distance 

due to natural variation, target type, target velocity, soil composition, or other potential factors. It 

arbitrarily determines target class, based on the target's velocity; that is, a target moving at less 

than 9 kph is classified as personnel, while a target moving at 9 kph or greater is classified as 

vehicle. The target description process after classification is also impeded by the deterministic 

nature of the solution, and the model consistently underestimates the number of individual targets 

within a target column. The problems discovered with the target classification and description 

process of the Phase V sensors have negated the potential utility of the information. The effects of 

these problems extend to the rest of the Marine Corps combat intelligence gathering capability. 

The issue of sensor capability is critical to the classification and description problem. The 

available test reports concerning the TRSS seismic sensor, known as the Seismic Intrusion Device 

(SID), detection capabilities do not address the potential variance in target detection ranges. In 

order to determine the required parameters for the detection distance variable, a field experiment 

was conducted at Marine Corps Base, Camp Pendleton, California, using the resources of the 1st 

Sensor Control and Management Platoon. The experiment was conducted to determine the effects 

of target type and sensor sensitivity, for fixed soil composition and target velocity. Trials were 

done using targets representative of the Tracked vehicle, Wheeled vehicle, and Personnel target 

classes. The results of these tests confirm that both target type and sensor sensitivity affect SID 

performance. Furthermore, the expected detection distance and the corresponding variation were 

determined for each combination of factors. 

A final factor which affects sensor performance with respect to the Sensor Formula is the 

existence of variable time delays built into TRSS itself. Known delays include a 2 second delay in 

the SID, as it self-confirms the detection, up to an additional 12 second delay, as the Encoder 
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Transmitter Unit (ETU) waits to send the activation message from the SID to the Sensor 

Monitoring System (SMS), and a possible delay of 3.75 seconds within the SMS as the message is 

processed. These delays have an effect on realized sensor performance which is proportional to the 

velocity of the target. At the upper bound of the delay, a target moving at 20 kph will have moved 

almost 100 meters after the SID actually detected it before the SMS reports its existence. In effect, 

the SID's detection range has been reduced by 100 meters. While the experiment does not 

specifically address this factor, knowledge of its effect is critical to understanding the sensor 

problem. 

Having determined the appropriate sensor parameters, the next step was to revise the 

existing estimators for velocity, column length, and the number of elements within a column, to 

take advantage of the parameters. The formulae currently used by TRSS as estimators rely on 

data collected from two seismic sensors. As currently applied, the formulae do not adequately 

estimate the true target states, because the fixed values used in the formula are actually random 

variables whose values depend on the sensor's detection capabilities. All estimates are based on 

detection times, and the revised model expresses the observed times as functions of the sensor 

parameters. The estimators are nonlinear functions of these parameters, and the propagation of 

errors method is used to estimate their mean and variance. All of the current estimators were found 

to be positively biased, with a common bias factor. The revised estimators remove this bias, and 

also provide a means for assessing the variance of the estimate. This knowledge of the variance is 

then used to establish confidence intervals for the estimated values, based on an application of 

Chebyshev's inequality. 

A critical portion of the problem was target classification, because selection of the 

appropriate sensor parameters depends on correct classification. Every target within a target class 

generates its own distinct seismic signature, and TRSS sensors are sensitive enough to detect the 

differences. The U.S. Army Remote Battlefield Area Surveillance System (REMBASS) uses 

similar sensors, and a target classifier which compares the target's seismic signature to an internal 

library of known signatures. It attempts to classify the target more precisely through repeated 

sampling and Bayesian updating, and attempts to classify the target as Tracked, Wheeled, or 

Personnel. Currently TRSS classifies targets only as Vehicle or Personnel, based on a simple 

comparison of the estimated velocity to a single constant value.   The revised model applies the 

xu 



discrete form of Bayes' Rule to determine the probability that target detected is of a specified target 

class, given the velocity, as reported by the sensor, the a priori distribution of target classes 

provided by the user, and an empirical a priori distribution of velocities for each target class. 

There appear to be no existing descriptions of this last distribution, so for the purposes of 

this study, a survey of experienced users was conducted to determine the characteristics of the 

distribution. Students at the Naval Postgraduate School, who had operational experience in 

planning and conducting tactical movements, were questioned as to the likelihood of a column, 

composed of a particular target class, moving at specified velocity intervals, over different 

movement conditions. The results of the survey form the basis for the Bayesian classification rule. 

The results of this study are clear. The objective was to determine if the current sensor 

algorithm could be improved, and to suggest enhancements that would provide better information 

to the operational commander. It has been found that the Sensor Formula can, indeed, be 

improved, especially in light of the sophistication of TRSS Phase V. The most significant 

improvements were achieved by determining the correct sensor parameters. Furthermore, now 

confidence intervals can be established for each estimate, which provide the user with a measure of 

how good the estimate is. It is recommended that the Marine Corps conduct further research into 

this area, especially into the effects of other soil and velocity treatments on SID detection 

capabilities. When these effects are more completely understood, and when the current estimators 

are replaced with the unbiased estimators presented here, TRSS will once again become an 

important, and trusted, tool in the Intelligence analysts toolbox. 
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I.     INTRODUCTION 

Unattended ground sensors have a tremendous potential for providing information about 

battlefield targets, but for the most part this potential has been unrealized. The Marine Corps has 

recently fielded the Phase V sensors of the Tactical Remote Sensor System (TRSS), a new family 

of unattended ground sensors which includes seismic, infrared and magnetic sensors. A detailed 

description of TRSS can be found in Appendix A. The purpose of TRSS is to provide Marine 

Air/Ground Task Force (MAGTF) commanders with intelligence information about the movements 

of enemy forces along routes within their Area of Interest. The Phase V sensors are more sensitive 

than any of the previous versions, and their potential to provide more detailed target information is 

also greater than that of previous sensors. Fully half of the Phase V sensors included in TRSS are 

seismic, and most of the target classification information provided by TRSS is taken from the 

seismic sensors. Approximately 75% of all sensors currently in operational use are seismic. 

The target classification and description model used by TRSS, called the Sensor Formula, 

was developed for use in the late 1960's. The model is capable of detennining two general target 

classes, dismounted infantry and vehicles. After classification, the target is further described based 

on its speed, the duration of the sensor observation, and the detection distance of the sensors. The 

Sensor Formula provides a target description that includes target speed, target classification, 

direction of movement, estimated length of the target's formation and estimated number of 

individual targets within the formation. 

A.       PROBLEM IDENTIFICATION 

To date, the target classification model used by TRSS has been simple and deterministic in 

nature. The model assumes fixed sensor detection distances based only on the target's 

classification type. It does not take into account the variance in sensor's detection distance due to 

natural variation, target type, target velocity, soil composition, or other potential factors. It 

arbitrarily determines target class, based on the target's velocity; that is, a target moving at less 

than 9 kph is classified as personnel, while a target moving at 9 kph or greater is classified as 

vehicle. The target description process after classification is also impeded by the deterministic 

nature of the solution, and the model consistently underestimates the number of individual targets 

within a target column. 
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The Marine Corps Tactical Systems Support Activity (MCTSSA) first became aware of 

the potential magnitude of this problem while it was preparing the new data interpretation software 

package for the TRSS Phase V Sensor Monitor System (SMS). During testing, the software 

routinely generated results which were physically impossible, such as target formations with 

negative column lengths. After checking the coding process to ensure that the existing target 

classification and description algorithm had been implemented properly, MCTSSA realized that the 

problem was the result of either variance in the detection capabilities of the new Phase V sensors, 

or was inherent in the algorithm itself. 

B. OPERATIONAL SIGNIFICANCE 

The problems discovered with the target classification and description process of the Phase 

V sensors have negated the potential utility of the information. Although TRSS Phase V sensors 

continue to be used by operating forces, users have little confidence in the results, and tend to 

discount them. In some cases users have decided to revert to Phase III hardware and software. 

This is unacceptable, as the Phase III items are being phased out in favor of the newer Phase V 

items. Eventually the entire inventory will be replaced. If a solution cannot be found, the Phase V 

sensors will not be used. 

The effects of this problem extend to the rest of the Marine Corps combat intelligence 

gathering capability. If ground sensors are removed from the MAGTF intelligence analyst's 

toolbox, he will be forced to get his information from other sources, such as ground 

reconnaissance, aerial imagery or signal intelligence units. These units are already being tasked to 

their maximum capacity. It may well turn out that if the MAGTF cannot collect the combat 

information from the sensors, it just will not be collected, and the MAGTF commander will be 

making his decisions based on a picture of the battlefield which is not as clear as it could be. 

C. ISSUES 

1.        Sensor Capabilities 

The issue of sensor capability is critical to the classification and description problem. The 

available test reports concerning the TRSS seismic sensor, known as the Seismic Intrusion Device 

(SID), detection capabilities do not address the potential variance in target detection ranges.  The 



last known report of this type, completed in July, 1993, states only that the geophones used by the 

SIDs have an average detection range, and that the range is based on the type of target being 

detected. It makes no judgments as to the variances of the ranges it reports [Ref. 1]. Empirical 

observations from the field, however, suggest that there is a great deal of deviation from the 

claimed detection ranges. 

There are a number of factors which contribute to the variations in detection distance. 

Some of these are directly related to the location in which the sensor is emplaced, while others are 

due to target effects. Previous work has shown that a sensor's detection range is affected by the 

composition and moisture content of the soil in which the sensor is buried, as well as the depth at 

which the sensor is placed. Target characteristics that effect variation include target weight, 

velocity, and target class. [Refs. 1 and 2] 

A side effect of soil composition on detection distance is that the detection area of a 

seismic sensor is not necessarily circular. If the soil composition is uniform between the target and 

the sensor, then the seismic signature of the target will attenuate smoothly as it approaches the 

sensor. However, the boundaries between different soil types, or bands of rock within a soil type 

will cause the seismic wave to refract, seriously reducing the detection range of the sensor and 

creating an irregularly shaped detection area. This study assumes that the sensor is placed in an 

area containing a homogenous soil type, and, thereby, the detection area of the sensor is circular, 

with the sensor placed in the center of the area. 

One factor readily controlled by the user is the sensor's sensitivity setting. The TRSS 

SIDs have three sensitivity settings; High, Medium, and Low. The Medium setting attenuates the 

detection range by approximately 15%, while the Low setting reduces detection range by about 

40%. Past experiments have demonstrated that the sensitivity level associated with the High 

setting is unacceptable, and for the purposes of this research only the Medium and Low settings 

will be considered. [Ref. 1, p. A4] 

A final factor which affects sensor performance with respect to the Sensor Formula is the 

existence of variable time delays built into TRSS itself. Known delays include a 2 second delay in 

the SID, as it self-confirms the detection, up to an additional 12 second delay, as the Encoder 

Transmitter Unit (ETU) waits to send the activation message from the SID to the SMS, and a 

possible delay of 3.75 seconds within the SMS as the message is processed. These delays have an 



effect on realized sensor performance which is proportional to the velocity of the target. At the 

upper bound of the delay, a target moving at 20 kph will have moved almost 100 meters after the 

SID actually detected it before the SMS reports its existence. In effect, the SID's detection range 

has been reduced by 100 meters. 

2.        Target Classification and Description 

Every target within a target class generates its own distinct seismic signature. TRSS Phase 

V SIDs are sensitive enough to detect the differences, but TRSS does not take advantage of this 

capability. The U.S. Army Remote Battlefield Area Surveillance System (REMBASS) uses 

similar sensors, and has a target classifier which compares the target's seismic signature to an 

internal library of known signatures. It attempts to classify the target as Tracked, Wheeled, or 

Personnel, through repeated sampling and Bayesian updating [Ref. 3]. But, REMBASS was 

considered too large and heavy for amphibious operations and Marine Corps purposes. The TRSS 

SMS, which is lighter and more portable, does not distinguish between seismic signatures. 

However, since sensor detection parameters, and the Sensor Formula, are dependent on the type of 

target detected, classification is necessary. Future plans for TRSS call for the use of a thermal 

imaging sensor to resolve the classification problem, but this sensor is still in its developmental 

stages. The general process which TRSS follows to classify and describe a target has six stages, 

and is illustrated in Figure 1. Currently TRSS classifies targets as Vehicle or Personnel, based on 

a simple comparison of the estimated velocity to a single constant value. 

The formula currently used by TRSS to determine the length of a target column relies on 

data collected from two seismic sensors. As currently applied, this formula does not adequately 

estimate the true length of column, because the fixed values used in the formula are actually 

random variables whose values depend on the sensor's detection capabilities. Similarly, the 

formula used by TRSS to determine the number of targets within a target column is inaccurate 

because it treats the reported column length as a fixed value, instead of a function of random 

variables. Reports from the field indicate that the current sensor algorithm consistently 

underestimates both the length of observed columns and the number of targets within the column. 



Observe Target 

Estimate Velocity (V) 

Classify Target (TC) 

s\ 
Estimate Length (LC) 

Estimate Number (N) 

Report 

Figure 1. Target Classification and Description Process. 

Human Interfaces 

Human interface with the target classification problem occurs in both sensor emplacement 

and in the analysis of the sensor activations to be used by the Sensor Formula. In general, human 

interface problems will not be considered by this study. It is assumed that operators will emplace 

the sensors properly, and that they will properly interpret the sensor activations reported. 

However, as a general reference, brief mention will be made of the most significant human 

interface issues. 

Improper placement of the sensors can greatly effect their detection capabilities. The 

sensor's detection capability will be reduced, or the sensor may not report at all, if the geophone is 

incorrectly oriented. If the sensor's sensitivity setting is not properly made, or if it is recorded 

incorrectly, the data transmitted by the sensor will be incorrectly analyzed by the Sensor Formula. 

Once the sensors have been emplaced and report a target, the SMS console operator is responsible 

for selecting the activations which the Sensor Formula will use to classify the target. The 

activations are displayed as symbols on the SMS console display. The selection is made by placing 

a cursor near the activation symbol. The software interface which presently executes the Sensor 

Formula reads the time corresponding to the cursor location, not the time associated with the 



nearest activation symbol. If the operator places the cursor too far from the symbol, the Sensor 

Formula will use inaccurate values for the times, and the resulting estimates for column length and 

number of targets will also be inaccurate. 

D.        PROBLEM STATEMENT 

To develop a Sensor Formula that will provide a more accurate target description, and 

takes into account the variation due to system time delays, sensor sensitivity, target type and target 

velocity. The revised Sensor Formula should take advantage of known sensor characteristics to 

better describe the target, and to provide the user with bounds that describe the credibility of the 

model's estimate. 



II.     BACKGROUND 

A.       HISTORY 

1. Early Development 

Development of an unattended ground sensor system began in September, 1966, at the 

direction of Secretary of Defense Robert McNamara. The intended mission of the system was to 

monitor the movement of enemy forces in Southeast Asia. By November, 1967, the first 

operational evaluation was being performed, as the sensor system was used to provide target 

acquisition for Air Force strike aircraft. Early in the following year, the sensors were first used in 

direct support of ground forces, when they were used to provide early warning and target 

acquisition for artillery during the defense of the combat base at Khe Sanh. These successes 

encouraged the Department of Defense to increase the operational employment of the sensors, and 

by mid-1968, they enjoyed widespread use throughout Southeast Asia. At this point, the sensors 

employed were in Phase I of their development. Phase I technology consisted of seismic sensors 

and transmitters which were limited to line of sight communications. 

In 1971, sensor employment was formalized in the Marine Corps, as the first three Sensor 

Control and Management Platoons (SCAMP) were established. By this time in their development, 

the sensor system technology had reached Phase II, which included more accurate sensors, more 

powerful transmitters, and a limited relay capability. Phase II sensors were first introduced to 

Southeast Asia in 1970. By mid-1971, the first Phase III sensors began to be employed, initially as 

a classified program. [Ref. 4] 

2. Phase III and Later Development 

The Phase III program dramatically increased the capabilities of the sensor suite. The 

program included hand emplaced seismic, acoustic, magnetic and infrared sensors, air delivered 

seismic sensors, more channels, powerful relays and an increased resistance to electronic warfare 

operations. The Battlefield Area Surveillance System (BASS III) was also introduced. BASS was 

a highly mobile monitoring system which greatly enhanced the ability to monitor sensors.   The 



system was generally mounted in a shelter which fit on the bed of a 5-ton truck, but also included a 

monitoring system which could be mounted inside a UH-1 helicopter. 

Phase III provided a reliable system which had widespread use throughout the Marine 

Corps and U.S. Army for the next twenty years. Development continued, however, with the 

objective of providing a system with worldwide capabilities, since Phase III sensors had been 

engineered specifically for employment in Southeast Asia. This effort became Phase IV of the 

sensor program, and ended with the fielding of the Remotely Monitored Battlefield Area Sensor 

System (REMBASS) by the U.S. Army in 1984. The Marine Corps did not accept REMBASS, 

citing weight, expense, lack of an air deliverable sensor, and inability to support amphibious 

operations as the primary reasons for its rejection. The Marine Corps then started its own 

development efforts for the sensor suite, which has become Phase V of the overall effort, and has 

yielded TRSS. [Ref. 4] 

B.        TRSS 

1.        Enhancements 

The TRSS Phase V sensor suite consists of a family of remotely monitored, unattended 

ground sensors, and the support equipment which transmits, displays and analyzes the sensor data. 

As with the previous sensor phases, detection is accomplished primarily with a Seismic Intrusion 

Detector (SID), but the suite also includes an Infrared Intrusion Detector (IRID), a Magnetic 

Intrusion Detector (MAGID) and an Air Delivered Seismic Intrusion Detector (ADSID). A digital 

thermal imaging sensor is currently under development. Phase V sensors are currently being 

fielded in the Fleet Marine Forces, and the current operational mix consists of approximately 30% 

Phase III equipment and 70% Phase V equipment. 

The Phase V effort provides a major upgrade to the 20 year old Phase III sensors. The 

suite uses improved technology to provide sensors which are lighter, have a longer transmission 

range, are more resistant to electronic warfare measures, and run on standard household batteries. 

It also provides the ability to record data that can be stored and evaluated at a later date. 

Emplacement, operating and monitoring techniques are similar to those used for the Phase III 

system. A complete description of TRSS Phase V is given in Appendix A. 



2.        Employment 

TRSS sensors are employed to provide continuous all-weather detection, location and 

monitoring of activity within a given area. The primary mission of the SCAMPs, which employ 

the sensors, is Battlefield surveillance. The specific missions most commonly performed are Route 

Surveillance and Target Indication. As the sensors are used to monitor choke points, roads and 

trails, they are expected to provide descriptive information which can be correlated with other 

intelligence information. 

The sensors are generally emplaced in groups containing a mixture of seismic and other 

sensors. The seismic sensors are used to provide the highest proportion of the target information, 

primarily because of their abundance and reliability. At least two SIDs will be placed in each 

sensor string. Other sensors, especially the IRID, are used in conjunction with the SID to confirm 

its reporting. The confirming sensors are also capable of providing more detailed information than 

the SID. For example, both the IRID and the MAGID are capable of counting targets as they pass 

the sensor, and the MAGID can also help to classify targets based on their metal content. [Refs. 4 

through 6] 

C.       FACTORS AFFECTING DETECTION CAPABILITY 

1.        Location Factors 

The effects of soil composition, topography and surface composition on seismic 

attenuation are well documented, and are the primary source of confounding variables, or "noise", 

in the target detection problem [Refs. 2 and 3]. However, their effects have not been well 

quantified, nor applied to refine detection probabilities. It is extremely difficult for the sensor 

operator to determine the characteristics of the sensor emplacement site with enough precision to 

allow him to better predict the sensor's detection capability. In recognition of this, operators are 

instructed to test the actual detection capabilities of each sensor they emplace by using a portable 

monitoring device and walking through the detection area to determine its limits. Unfortunately, 

tactical requirements often preclude such a test, and in any event, the test would not provide the 

operator with information regarding the sensor's ability to detect vehicles. 



2.        Target Factors 

The characteristics of the target have a significant impact on the SID's detection capability. 

Any force emanating from the target and coming in contact with the ground will create a seismic 

signature. Both aircraft and helicopters, for example, flying over a seismic sensor will be detected 

because the soundwave produced by their engines and rotors strikes the ground and creates a 

distinctive seismic signature. The seismic signature of the target depends on the target's weight, 

velocity and mode of movement. Targets such as tracked vehicles and rapidly moving dismounted 

personnel, which strike the ground as they move, produce relatively clear and strong seismic 

signature, while wheeled vehicles and more slowly moving personnel produce weaker signals. 

Engine and other mechanical noise is also transmitted as seismic activity and increases the 

signature of vehicles. [Refs. 4 and 6] 

D.       TARGET CLASSIFICATION ALGORITHMS 

1.        The Sensor Formula 

The current sensor formula is nearly 30 years old, and has been used continuously with 

Phase I through Phase III sensors, and continues to be used with TRSS. The formula relies on four 

observations from a pair of adjacent sensors (see Figure 2). Each sensor reports the time when it 

first detects the target, and the time when it last detects the target. These times are shown as Ti in 

the figure. The parameters used by the formula to classify and describe the target are 

d the straight line distance between the sensors, 

Tm the Time that the target took to travel from one sensor to the next, 

777 the Total Time the target was detected by the first sensor, 

CDR the Combined average Detection Radius of the two sensors, 

V the target's average velocity, 
A 

V the velocity estimator, 

LC       the target's average column length, 
A 

LC      the length estimator, 

N        the number of elements in the column, and 
A 

N        the estimator for the number of elements in the column. 
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Figure 2. Sensor Geometry. 

The formula estimates average velocity through simple time/distance calculations involving 

the known distance between two sensors, and the time it takes the target to travel between them. 

Activations from either seismic or infrared sensors can be used to determine velocity. For the 

seismic sensors, the formula used to estimate velocity is 

V= 
Tm (1) 

Once target velocity has been calculated, the total distance traveled by the target as it 

passes through one sensor's detection area is determined by multiplying the velocity by the total 

time the target is detected by that sensor. Only seismic sensors can be used to provide this time, as 

they are the only type of sensor which are capable of continuously detecting the target. Finally, the 

length of the target column is estimated by subtracting the sum of the average detection distances 

of the two sensors. The formula used to estimate LC is 

LC=(4-
S
)TT\-CDR 

= (V-TTl)-CDR. (2) 

Note that in the current formula, CDR = E[Rj] + E[R3], even though R2 and R2 are used to 

estimate LC.  To be correct, CDR should be the expected value of the detection diameter.  In its 
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present form, CDR is accurate only if the two sensors have the same sensitivity setting. Once the 

length of the target column has been estimated, the total number individual targets within the 

column is also estimated. The formula used by TRSS to estimate the number of targets within a 

target column is 

N=£ (3) 
Int 

where Int is the expected interval between individual vehicles (usually 50 meters) or personnel 

(usually 5 meters) within the target column, and is specified by the user each time the Sensor 

Formula is used. The value of N is always rounded up to the next highest integer value. Note 

that this formula will always incorrectly estimate the number of items in the column, even given 

perfect information about the column length and interval between items, because it fails to account 

for the extra item which must be included in order to create the intervals (that is,N + ] items are 

required to create N intervals), and because it does not consider the length of the items themselves. 

2.        Alternatives 

TRSS uses a very simple method to classify targets-if the target velocity is less than 9 

kph, the target is classified as Personnel. If the velocity is greater than or equal to 9 kph, the target 

is classified as Vehicle. A more sophisticated method of target classification is that employed by 

REMBASS, which compares the signature it receives from a target to an internal library of seismic 

signatures. The REMBASS classifier is capable of producing Personnel, Wheeled vehicle and 

Tracked vehicle (PWT) classifications. However, as previously stated, REMBASS is not an 

acceptable alternative for the Marine Corps. 

The REMBASS PWT classifier relies on a Bayes minimum error decision rule, based on 

target observations. The target's seismic signature is repeatedly sampled and compared to the 

decision rule, until an assurance threshold is reached and the target is classified. The classifier 

compares the target observations with progressively more difficult rules in its library, that is, it 

first attempts to classify the target as personnel, then a wheeled vehicle, etc. If no classification 

can be made, the classifier simply returns the result "Detected". Otherwise, it returns the most 

likely target classification. [Ref. 3] 
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An additional enhancement of REMBASS, presently under study, is a site adaptive 

classifier improvement which allows the user to measure and take into account the effects of the 

sensors location on seismic signature attenuation. The user input serves as a baseline which the 

REMBASS classifier uses to improve the target classification data received from the sensor. As 

each detection message is received, the enhanced classifier will use the target observations to 

classify not only the target, but also to classify the site in which the sensor is located. A library of 

standard site classifications will be maintained in the processor, and site characteristics will be 

used to modify data received from a sensor in a particular site. Initial research has shown that the 

site adaptive classifier can improve automatic classification performance by an average of 1.9%, 

and operated assisted classification performance by 11.3%. [Ref. 3] 
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III.     METHODOLOGY 

A.       SENSOR WEAKNESSES 

1.        Baseline Detection Capability 

As previously mentioned, estimates of the SID's mean detection distance for various target 

classes have been made, but there is no evidence of existing estimates for variance in the distances. 

In the current Sensor Formula, the detection distances are treated as constants, but they are more 

accurately classified as random variables. The expected value and variance of the Phase V SID 

detection distance were unknown. The first requirement, then, was to conduct an experiment and 

collect data which could be used to characterize the detection distance random variable. The data 

from the experiment was also used to test the existing estimates for mean detection distance. 

The baseline estimates for detection distance used to setup the experiment were those 

stated in the TRSS Operator's Course [Ref. 6]. These distances are detailed in Table 1, and were 

apparently derived from an experiment done by the Structures Laboratory of the U.S. Army Corps 

of Engineers Waterways Experiment Station in 1993 [Ref. 1]. The experiment was conducted both 

to verify these distances and to allow for detections different from those reported. 

TRSS SID Detection Distances (meters) 

Surface 

Type 

Target Class 

Sensitivity Dismounted Troops Light Wheeled Heavy Wheeled Tracked 

Paved Surface Medium 

Low 

45 

15 

50 

20 

200 

50 

300 

300 

Gravel Surface Medium 

Low 

NA 

NA 

100 

50 

300 

150 

300 

300 

Cross Country Medium 

Low 

85 

20 

150 

100 

300 

300 

300 

300 

Table 1. Baseline detection distances [from Ref. 6]. 
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2.        Detection Distance Experiment 

In order to determine the required parameters for the detection distance variable, a field 

experiment was conducted at Marine Corps Base, Camp Pendleton, California, using the resources 

of the 1st SCAMP. The experiment was conducted so that the factors of target type, velocity, soil 

composition and sensor sensitivity were held constant for each trial. Due to cost and time 

constraints, only one soil composition was tested, and the test site was selected to achieve 

maximum possible uniformity of soil composition. The soil type in the test area was classified, 

according to the Defense Mapping Agency scale, as ML7, Inorganic silts and very fine sands. The 

United States Department of Agriculture, Soil Conservation Service, rating of this soil was a 

mixture of HrC, Huerhuero loam, and EdC, Fine Sandy loam. The test area sloped slightly down 

towards the sensors, so that seismic attenuation could be minimized. An open field was used as the 

test track, with targets following a specific course across the field. Since the test track corresponds 

to the cross country classification used by the previous reports, the targets should produce the most 

distinct seismic signatures and the longest detection distances. See Figure 3. 
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All distances in meters. Not drawn to scale. 

Figure 3. Seismic Sensor Experiment Layout. 

A field of 24 sensors was emplaced, consisting of a 12 SIDs set for low and 12 set for 

medium sensitivity. The track and sensors were oriented so that the targets approached the sensors 

from at least 500 meters away and then traversed the entire sensor field, so that as many sensors as 
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possible would be activated by each target run. The Sensor Mobile Monitor System (SMMS) was 

established far enough away from the sensor field so that the vibrations of its generator did not 

activate the sensors, but close enough so that the operators could observe the target runs. 

Targets representing all target classes were used. An LVTP-7 Amphibious Assault 

Vehicle (AAV) was used to represent the Tracked classification. An M923 5-ton truck and an 

Ml098 High Mobility Multi-Wheeled Vehicle (HMMWV) were used for the Heavy and Light 

Wheeled categories. The Personnel classification was represented by 12, 24, and 36 man units. 

All vehicles conducted the experiment without any cargo, and the personnel units did not have 

weapons and were equipped only with their load bearing equipment. 

As each target traveled down the test track, the time it started the run and the time it 

reached a point 50 meters from the sensor field were noted by infrared sensors and an observer 

traveling in the target, and reported to the SMS. The time the target passed each sensor row was 

also recorded by the observer. The readings from the infrared sensors and the times recorded by 

the observer were used to determine the target's actual velocity for each run. The Tracked target 

runs were done at a velocity of 20 kph, the Wheeled runs at 15 kph, and the Personnel runs at 

approximately 5 kph. The targets stopped moving as soon as they had cleared the last sensor. 

3.        Detection Distance Random Variable 

Experimental results were used to characterize the distribution of the random variable 

associated with detection distance, R, which, given soil type, depends on the sensor sensitivity 

setting and target type. The empirical distributions were analyzed and compared to families of 

known distributions to determine which most accurately models R. The mean detection distance 

and variance for each combination was estimated from the experimental data. Where possible, the 

mean ofR was tested against those suggested by the Operator's Course. The detection distance, rtj, 

for each sensor i recorded by the SMS during each trial/ was calculated using the time the sensor 

activated (t;I), the time the target was adjacent to the sensor (tj0), the target's velocity (v,), and the 

distance from the sensor to the test track (Ä.; see Figure 2) by the formula 

r,j = V(^2 + (vy['/)-',i])2 (4) 
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B.       SENSOR ALGORITHMS 

As previously stated, the problem is to first classify a target as a member of a general 

class, and then to describe the target, given that it is a member ofthat class. The result provided to 

the user will be a list of potential target descriptions and the confidence level associated with each 

description. 

1.        Assumptions 

It is expected that the sensors will be employed as defined by current Marine Corps' 

doctrine. Because of that, this study assumes that the distance between sensors is known 

accurately and that the targets are moving parallel to a line drawn through the sensors' locations. 

The later assumption follows from the fact that the sensors are generally placed adjacent to a trail 

or road, in order to provide surveillance of traffic moving on the route. [Refs. 4 through 6] 

It also follows from employment doctrine that the targets can be assumed to be moving at 

an average velocity, V, and have an average length, LC, which do not vary, through the sensors' 

detection area. Sensors are generally placed well away from intersections or other likely areas 

which might cause a target to change its velocity. The sensors are also placed close enough 

together so that the target's column length will not change significantly during detection. 

Throughout this study all targets are assumed to maintain a constant velocity and length. 

A final assumption is that the detection area of a sensor is generally circular. This means 

that the detection distance of a sensor is equal for both targets that are approaching the sensor's 

position and targets departing the sensor's position. The result of this is that Rx and R2, in Figure 4, 

are independently and identically distributed, as are R3 and R4, although possibly with a different 

distribution. 

2.        Velocity Estimate 

As stated above, the current model estimates velocity from the sensor observations by the 

Equation 1, which simply calculates velocity as the quotient ofd, the known distance between two 

sensors, and Tm, the time it took a point in the target to travel between those sensors (See Figure 

4). Tm is presently stated as a function of the detection times observed by the sensor, that is, as 
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Tm = MWM^) (5) 

However, Tm can also be expressed as a function of the appropriate realizations of 

Ras 

Tm = Ri-R2-R3+R4 + 2d 
2V (6) 

so the distribution of V is a function of the distribution of R.  See Appendix B for details of how 
the Ts and the Rs are related. Note that V it is not a linear function of/?, so its mean and variance 

will not simply be linear functions of E[R] and Var(Ä). Once the distribution of R is known, then 
A 

the distributions of 7m and V, and their expectations, can also be determined. 

Figure 4. Sensor Observations as Basis for Estimates. 

3.        Target Classification 

In the current model, all targets whose reported velocity is less than 9 kph are classified as 

dismounted infantry, while all targets whose velocity is greater than or equal to 9 kph are classified 

as vehicles. The revised model will apply the discrete form of Bayes' Rule to determine the 

probability that target detected is of a specified target class TCt, given the velocity, V, reported by 

the sensor, the a priori distribution of target classes TC provided by the user, and an empirical a 

priori distribution of velocities for each target class. That is, 
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Pr(TCi\v)= ^rc-W^c,> 
I,PriTCjyPr(hTCj) (7) 

where Pr(V\TQ is the multinomial distribution describing velocity (see Appendix C). The result 

will be a list of target classifications and the probability that the target of interest belongs to each 

specific class. After classification, a target description will be provided for each potential target 

classification. 

4.        Target Description 

The current deterministic TRSS target description model will be used as a basis for the 

probabilistic model. The model relies on the fact that column length is merely a function of the 

number of items in the column and the interval between those items. It first estimates the column 

length based on the target's velocity and classification, and then works backwards to estimate the 

number of vehicles or personnel in the column. 

a.        Length of Column 

The target's column length is equal to total distance traveled by the column, while 

being detected by one of the sensors, minus the combined detection distances of sensors. Distance 

traveled is determined by multiplying the target's velocity and the length of time the target was 

reported moving at that velocity. However, since the total distance traveled as reported by the 

sensor includes the detection distance of the sensor which provided the reports, it must be removed. 

The current model is 

LC=(^TT1)-CDR. (8) 

One source of errors in the current model is the use of bad CDR values (actually, 

for the E[/?,.]). This formula can also be expressed as 

LC = d(ZOL)-CDR. (9) 

TT\ is generally expressed, as a function of observed time, as 
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TT\ = T2-T,. (10) 

It can also be expressed as a function of/?, of the true column length, LC, and of 

the velocity, V. This expression is 

„—,,    R\ +R2 +LC 
m = v • 01) 

Note that Equation 10 uses R, and R2, so CDR should be (E[i?7] + E[R2]), and not 
A 

(E[R}] + E[R3]).  Therefore, LC can be written, as a function of the observations of R, given the 

true column length LC, as 

A 

The revised model will attempt to reduce the variance of LC by including the 

observation of both sensors to yield TT, the total time the target was observed by both sensors. TT 

is 

JT_ (7a-7-0+ (7-4-73) 

i?l+Ä2+Ä3+7?4 + 2Z,C 
 2T • (I3) 

Now let E[Rj] = E[R2] = fi„ since i?; and R2 are identically distributed, and let 

E[R3] = E[R4] = H2, for the same reason. Then the revised formula for the estimated column length 

becomes 

Tr    jRl+R2+Ri+R4 + 2LC}    f2uj_+2p^| (u) 
LC = dV Ri-R2-Ri+R4 + 2d )-\—2—)- (   ' 

If sensor 1 and sensor 2 are both set on the same sensitivity level, this reduces to 

21 



FA._jf*l+*2+*3+*4+2Z.C>\       ? 

^Rx-Rj-R.+R. + ld )   1)ix- (15) 

The estimate of column length is then a random variable that is a function of the 

known distance d, the sensor detection distance R, whose distribution has been determined 

empirically, and the true column length LC.   Note that the target's velocity, V, does not directly 
* A 

affect LC.  The distribution of LC can now be determined as a function of the distribution of R 
(see Chapter IV). 

b. Number of Targets 

The current target description model estimates the number of individual items in 

the target column by dividing the column length by an estimate of the interval between targets, and 

rounding up. The interval estimate is provided by the user, and is doctrinally 50 meters for 

vehicles and 5 meters for personnel. 

The revised model will account for variation in the interval between individuals in 

the column, and will express the number of targets as a random variable, N. Its distribution will be 

a function of the estimated column length, LC, and the expected value of the variable, Int, which 

describes the sum of a column element's mean individual length and the mean interval length 

between it and the succeeding element, which will vary by target class. It is important to include 

the element's length in the value of Int, especially when the ratio of element length to interval 

between elements is relatively large. Failing to do so will result in estimates which consistently 

overestimate the actual number of elements. Both LC and Int are dependent on the target 
classification made by the algorithm. The value of E[Int] for a specific target class can be 

determined by expert opinion and empirical observation. The revised model for the distribution of 

the number of targets in the column will be 

N=-±£- + l, (16) 
E[Int] 

A 

for each possible target class TC. The final value of N for each set of sensor observations will be 

expressed as a confidence interval about E[N] (see Chapter IV). 
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5.        Confidence Intervals for the Estimates 
A A A 

Once the values of V, LC, and N have been determined, the final step in the target 

description process is to express confidence intervals for each estimate, based on the distributions 

formed as functions of the distribution of R. For the distributions that can not be determined, or 

are intractable, Chebyshev's inequality is used to place conservative bounds on the estimates (see 

Chapter IV). 
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IV.    RESULTS 

A.       SENSOR PARAMETERS 

1.        Limitations of the Experiment 

Several obstacles arose during the conduct of the experiment which hindered the data 

collection effort. First, the training area in which the experiment was conducted was adjacent to 

one in which CH-53E helicopters and AV-8B Harrier VSTOL jets were conducting training, and 

several runs had to be discarded because of the seismic interference caused by the aircraft. 

Fortunately, the seismic signature of an aircraft is readily discernible on the SMS screen. 

A more serious concern was the fact that the IRIDs used to record the start times for the 

target runs began to malfunction intermittently during the Personnel test and the Light Vehicle test. 

At irregular intervals, either or both would begin to activate continuously. Both the IRIDs and 

their respective ETUs were replaced, but the replacements also began to malfunction. As a result, 

the base time used in determining the detection distance for each sensor, tv in Equation 4, could not 

be precisely observed. In some cases, the proper time could be determined from the time and 

position records of the observer traveling with the target. In those cases where it could not, the 

data was discarded. 

An unexpected difficulty appeared during the post-collection data analysis. It was initially 

desired to find a single family of distributions which could be used to generally approximate the 

distribution of the detection distance, R, for each target classification. However, none could be 

found which provided an acceptable model for estimation. Not only did it appear that the 

distributions were different between target types, but the distributions also varied between 

sensitivity settings. 

Since no common family of distributions could be found which would provide a general 

method to approximate the distribution of R, the propagation of error method was used to 
  A A 

approximate Tm and TT as functions of R.  This method expresses V and LC as functions of R 

using Taylor series expansions. A second order expansion is used to approximate the mean of each 

distribution, and a first order series is used to estimate the variance. 
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A final obstacle, also noted during data analysis, was that the sensors were not placed 

optimally on the test track. In some cases, most notably among the sensors set on the low 

sensitivity setting during the Personnel test, some sensors did not activate during some test runs, 

presumably because they were placed too far away from the track. Future experiments should 

ensure that all sensors are placed within 2 meters of the track, to ensure more activations. 

In addition, it would have been better to extend the test track several hundred meters 

beyond the sensor field, in order to collect data on the "departing" detection distance of the sensors. 

As it was, some data was collected on this distance (R2 and R, in Figure 4), but not enough to make 

any conclusions about its relationship to the "arriving" detection distance (R, and R3). 

2.        Results of the Experiment 

The results of the experiment are tabulated below, with a separate table for each target 

type. Each table list the value of TC tested, as well as the parameters observed. The parameters 

reported are 

n number of observations in the sample, 

Mi        mean detection distance, on the low setting, 

sL sample standard deviation of the detection distance, 

on the low setting, 

\iM       mean detection distance, on the medium setting, and 

su        sample standard deviation of the detection distance, 

on the medium. 

a. Personnel Targets 

As noted above, the results of the experiment for the Personnel target class were 

the most affected by the problem with the IRIDs. However, the low velocity of the target, 

combined with the maximum possible timing errors, yields calculated detection distances that will 

still be within 4.5 meters of the true distance for any given observation. Assuming that the timing 

error is uniformly distributed between -3 and 3 seconds, the expected error is zero, and overall will 

have no effect on the mean distances, but will effect variance. The results of the experiment are 

given in Table 2, and in Figures 5 and 6. 
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Target 

Parameter 

n       Min^     Max,       y.L         sL          n       Min„     Maxw       yiM         sM 

12Pers 

24 Pers 

36 Pers 

Combined 

64 5.00 63.95 15.60 14.58 93 15.00 49.75 22.07 7.20 

78 5.00 101.12 19.04 17.80 105 15.00 104.59 27.49 15.77 

19 5.00 92.40 23.53 23.85 32 15.00 88.88 25.70 15.63 

161 5.00 101.12 18.02 17.51 230 15.00 104.59 25.05 13.16 

Table 2. Results of Experiment with Personnel Targets. 

Comparison of Detection Distances 
Ftersonnel Target Class - Low Setting 

TO 
90 - 

880 - 

§70 - 

I50 ~ 
40 - 

30 - 

20 - 

t> - 

0 - 

fl 

* 
* 

* 

* 

i 
t 

i 

4=+    " i y h===H 
12 Pers 

Small interior box depicts Cl for median 

—I 1 1  

24 Pers 36 Pers        Combined 

Target 
Box widths are proportional to sample s 

Figure 5. Comparison of Personnel Detection Distances - Low Setting. 

Figures 5 and 6 show that the distribution of detection distance, for each of the 

three target sizes, is similar. Nonparametric tests were applied to verify this observation. The 

hypotheses H,,: (R\12 Pers) = (R\24 Pers) = (R\36 Pers), that there was no difference in detection 

distance between target sizes, was tested for each sensitivity setting, using the Kruskal-Wallace test 

with a = 0.05. For the low sensitivity setting, the test failed to reject H„, with a significance level 

of 0.157 (adjusted for ties). For the medium sensitivity setting, the test also failed to reject t^, 

with a significance level of 0.094 (adjusted for ties). Since the hypothesis that the distribution of 

(R\Pers) is independent of the number of personnel in the column could not be rejected, the data 

sets were combined, and the statistics for the Combined sets are also shown in Table 2.   The 
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parameters used for the remaining calculations will be those for the Combined distribution of 

(R\Pers). Finally, the Mann-Whitney test was used to test H„: (Refers) = (R^JPers), that there 

was no difference between sensitivity settings. The test rejected H,,, with an observed significance 

level of less than 0.001. See Figure 7. 
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Figure 6. Comparison of Personnel Detection Distances - Medium Setting. 
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Figure 7. Comparison of Combined Personnel Detection Distances - Both Settings. 
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b. Wheeled Vehicle Targets 

Separate experiments were done to determine the parameters of the detection 

distance variable using the Heavy Wheeled Vehicle and Light Wheeled Vehicle classifications. 

The results of the test are given in Table 3 and Figure 8. 

Target n Min£ 

Parameter 

M"i      Mi         *L         n Min„  Max„     pM »M 

Lt Wheeled 

Hvy Wheeled 

68 5.00 55.40 28.48 11.53 64 28.79 89.72 56.76 15.82 

60 8.67 66.01 38.99 11.99 60 40.50 128.03 75.90 18.56 

Table 3. Results of Experiment with Wheeled Targets. 

Figure 8 also shows that the detection distributions are different, both for target 

class and for sensitivity setting. The data were also tested against each other to determine if the 

came from the same distribution. Four pairwise comparisons, with the pairs Lt-Low/Hvy-Low, 

Lt-Low/Lt-Med, Hvy-Low/Hvy-Med, and Lt-Med/Hvy-Med were made, using the Mann-Whitney 

test. All tests rejected the hypotheses, with observed significance levels of less than 0.001. 

Comparison of Detection Distances 
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Figure 8.   Comparison of Wheeled Target Detection Distances - Both Settings. 
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Knowledge of the differences in detection capabilities against Light and Heavy 

Wheeled Vehicles is directly useful, however, only if the Sensor Formula is able to discern the 

difference between these two types of targets. Since the classification algorithm will only classify 

targets as Wheeled, and since is unlikely that any column observed will consist exclusively of either 

Light or Heavy Wheeled Vehicles, a mixture of the two detection capabilities is required. In fact, 

since, for tactical reasons, it is possibly more likely that any column of wheeled vehicles will both 

begin and end with a light vehicle, an argument could be made that all targets classified as Wheeled 

should use the Light Wheeled parameters. This model will assume that either is equally likely, and 

will estimate the detection parameters by using a uniform mixture of the two samples, for each 

sensitivity setting. There is some danger in this if, for example, the resulting distribution is 

bimodal, but Figures 9 and 10 show this is not so. The results of the mixtures are given in Table 4 

and Figure 11. 

Detection Distance - Corrbined Wheeled Class 
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Figure 9. Combined Wheeled Detection Distances - Low Setting. 
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Figure 10. Combined Wheeled Detection Distances - Medium Setting. 

Target 

Parameter 

n        Mh^     MsaL       \iL          sL           n        Min^     Max^       ]iM         sM 

Wheeled 128 5.00 66.01 33.40 12.83 124 28.78 128.02 66.02 19.64 

Table 4. Results of Combining Wheeled Vehicle Classes. 
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Figure 11. Comparison of Combined Wheeled Target Detection Distances - Both Settings. 
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As with previous samples, the Mann-Whitney test was used to verify that the 

different sensitivity settings produced different distribution for R. In this case, the test rejected the 

null hypothesis, with a significance level of less than 0.001. 

c. Tracked Vehicle Targets 

Two types of trials were run with the AAV. The first, which made up the majority 

of the trials, consisted of the AAV driving through the sensor field at a velocity of 20 kph. In the 

second type, which made up only one trial, the AAV moved through the sensors at a velocity of 

approximately 39 kph. Although the trial at this higher velocity only provided 24 data points, it 

appears that target velocity may have little effect on a sensor's detection distance. The results of 

these experiments are summarized in Table 5, and in Figures 12 and 13. 

Target n 

Parameter 

Min£    Mtac      \iL          sL          n Min^   Max„     ^       s„ 

Tracked 

Fast Tracked 

Combined 

148 64.62 207.25 119.83 26.03 144 54.55 261.04 174.35 34.32 

12 67.44 165.07 119.33 31.62 12 112.40 209.71 169.40 34.55 

160 64.62 207.25 119.79 26.33 156 54.55 261.04 173.97 34.19 

Table 5. Results of Experiment with Tracked Targets. 

It is seems obvious from Figures 12 and 13 that velocity has little effect on the 

distribution of R. To verify this, the data sets for each target velocity and each sensitivity setting 

were then tested by the Mann-Whitney test to determine if they could have been drawn from the 

same distribution. The tests failed to reject the hypotheses that the distributions ofR for the Slow 

and Fast velocities were the same, with observed significance levels of 0.982 and 0.673, for the 

Low and Medium sensitivity settings, respectively. The test did reject the hypothesis that the Low 

and Medium settings produced the same results, with an observed significance level of less than 

0.001. See Figure 14. 
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Figure 12. Comparison of Tracked Target Detection Distances - Low Settings. 
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Figure 13. Comparison of Tracked Target Detection Distances - Medium Settings. 

d.        Comparison with Previous Results 

The results of the experiment were compared to those published in the TRSS 

operator's manual.   The differences are illustrated in Figures 15 and 16.   Both figures clearly 
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demonstrate the problem with the detection distances published in the Operator's Course. They do 

not represent the performance actually experienced by operators in the field. Since the Sensor 

Formula relies so heavily on these parameters, its accuracy will depend directly on that of the 

estimates of the sensors' detection distances. 

Comparison of Detection Distances 
Gorrbined Tracked Qass - Both Seffirgs 

I I 
.c 

250 - 

* 

■BO - 

50 - * 

Low MedMYi 

Sensor Setting 
ana« interior box depicts Q for medan. Box widths are proportional to sample s 

Figure 14. Comparison of Tracked Detection Distances - Both Settings. 

Low Sensitivity Setting 
Mean Detection Distances 

Personnel     Lt Wheeled   Hvy Wheeled     Tracked 
Target Type 

TRSS Manual H Experiment 
Based on a constant velocity and single soil class. 

Figure 15. Comparative Results - Low Sensitivity Setting. 
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Meters 

Medium Sensitivity Setting 
Mean Detection Distances 

Personnel     Lt Wheeled Hvy Wheeled    Tracked 
Target Type 

ITRSS Manual M Experiment 
Based on a constant velocity and single soil class. 

Figure 16. Comparative Results - Medium Sensitivity Setting. 

The Wilcoxon Signed Rank test was used to compare the median values of the 

experiment trials with the average detection distances stated in the manual. The observations made 

from the Figures above were verified by the results of these tests. The data from each of the 

target-sensitivity settings was tested against the median for that combination listed in the 

Operator's Manual. All eight tests conducted rejected the hypothesis that the sample medians were 

the same as the published detection distances, at a significance level of less than 0.001. 
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B.        SENSOR FORMULA 

1.        Velocity Estimate 

The current method of estimating target velocity has produced generally satisfactory 

results, but analysis shows that it is positively biased. Removing this bias, and recognition of the 

variance of the estimate, will improve the performance of both the target classification and 

description models. 

a.        Expected Value 

The second order Taylor series expansion of V about u^ is 

From the above, since E[(Tm - fiTJ] = 0, the expected value of V is 

.    d   }     1    fo^ + al 

(*) & 
2V2 

= F(1 + ^}- (I8) 

Equation 18 clearly shows that this method of estimating Fis positively biased. 

The magnitude of the bias can be controlled through the selection of the sensor sensitivity setting, 

which determines the values of a2;, and by increasing the distance between the sensors. Combining 

the sensor-dependent parameters to form oc
2, the unbiased estimator of V, named V*, is formed by 

This estimator is not yet useful, however, because the parameter a*c depends on 

the target class observed, and the target is not classified until after *" has been calculated.  It will 
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be shown below that target classification can still be accomplished using the biased estimator of V, 

and that once the target has been classified, the bias can be removed to report the unbiased velocity 

estimate. 

b. Variance 

A 

The first order Taylor series expansion of V about \iTm is given by 

V-Trn 

(20) 

and, using the bias correction factor derived in Equations 18 and 19, the variance of the revised V 
is 

Far(*")*(l+^)  < 2\~2„2 

/^-L.*2 

= (i+°2)~ 2V2   ) 

= v*oi(i+oiy2. 

r        \ 

d2 

(21) 

Note that since the bias correction factor is greater than one, the variance of the 
A 

revised estimator is less than that of the original method.   Unfortunately, the variance of V 
depends on the true value of V. However, Equation 21 also shows that for any given values of V 

and target class, the variance of its estimate is inversely proportional to the square of the distance 
A 

between the sensors used.  The magnitude of var(F') can be predetermined, and to a great extent 

limited by, the positioning of the sensors on the ground.   The farther apart they are placed, the 

smaller the variance of the estimate is likely to be. 

c. Confidence Interval 

Since the distribution of R is not known, for any given values of V and target 

class, Chebyshev's inequality can be used to place bounds on the goodness of the velocity estimate 

by 
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a? 
Pr{\V-^,\<t)>\-^-*\-a. (22) 

This form allows a confidence interval of size 2t to be found for the desired 

probability. Equation 22 can be used to find a (l-a)100% confidence interval for V, given V', 
through the following manipulation: 

a? 
Pr(lF'-^|<0>l--f «1-a 

Q2 

=> Pr(\V>-V\<f)>l-^*l-a. (23) 

since \iy,-v. Therefore, for the inequalities to hold, 

,= °* 

Pr ir-n<-^]>i-a. 
Taj (24) 

From this, and using Equation 21, lower and upper bounds of the confidence limit 

for Fcan be found. The upper bound is 

V- V' < Va<(l+cV 
Ja 

2\~l 

,2N-1 

JE 
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V < V 
\   gc(l+gg)-lV 

JE (25) 

Similarly, the lower bound of the confidence interval is found to be 

V> V 

JE (26) 

The confidence level for the true velocity, based on a given observation, is found 

by substituting the observed velocity and the sensor parameters into Equations 25 and 26. For 

example, given a Wheeled target, moving at an observed velocity of 7.2 kph, detected by two 

sensors on the medium setting, which are 300 meters apart, a 90% confidence interval for Fis 

V 
^(1+ag)'1 

1 + 
Ja 

< V< V 

1- gc(l+qg)" 
Ja 

7.2 
f \ 
l + 0.067 

< V< 7.2 

JÖI 
1- 0.067 

JÖI, 

(5.95 kph <V< 9.12 kph). 

2. Classification 

a. General 

The TRSS classification problem is a common decision theory problem for which 

Bayes' Rule provides a solution. In general terms, there exists a population consisting of m 

classes, and we wish to classify an individual as belonging to a specific / of those classes, based on 

some observed measurement.   In TRSS, the population is all targets on the battlefield, and the 
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problem is to classify any given target as a member of the class TC, based on the velocity as 

measured by the SIDs, where TCi has the values 

TCP = Personnel (P), 

TCW = Wheeled vehicle (W), and 

TCT = Tracked vehicle (T). 

Bayes' Rule calculates the posterior distribution of the target's type. The 

Intelligence Officer first provides the prior probability, «„ that a target is of a given type i. These 

probabilities are denoted {*,,, it,, nT). This information is readily available from his order of 

battle database. In the absence of such data, he can assign a uniform prior probability of 1/3 to 

each classification. 

This method also requires the user to know the distribution of velocity, given 

target type. This information is not readily available, so a survey of experienced personnel was 

conducted to establish baseline distributions for four movement conditions. The results of this 

survey are tabulated in Appendix C. Given the *„ the Intelligence Officer's prior beliefs, v, the 

target's velocity, and Pr(Vel = v\TC = TCJ, the discrete distribution of velocity by target types, 

the target can be classified by 

Pr(TC = TC,\Vel = v) =   ^PriVel = ^TC = TCt) (2?) 

IlnkPr(Vel = v\TC = TCky 

However, the value reported by the sensors is  V, not  V.     Knowing that 
E[V] = V(l +a2

c), we can transform Equation 27 to classify the target based on v: 

Pr(TC = TClVel = v) =   **p*Vel = (1+<'>lTC = TCl) 
ZntPiiVel = (l+olyV\TC = TCky (2g) 

For each target class TC„ Equation 28 will yield the probability that the observed 

target belongs to that class, based on the biased velocity observation.   Once so classified, the 
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unbiased velocity estimate can be calculated and reported to the user, and the column length and 

number of elements of each target can be estimated using the corresponding sensor parameters. 

b.        Posterior Risk 

If desired, Bayes' Rule can also be used to assess the posterior risk of a 

classification. Posterior risk is defined as the expected risk of assigning a target to a specific class. 

It can be determined by first establishing the loss value l(ij), that is, some measure of the 

importance to the user of mistakenly classifying a target of class TCi to the class TCr The 

posterior risk of assigning a target to TC{ is PRt, and is found by 

Jilki%kPr{Vel = v\TC = TCk) 

IlnjPr(Vel = v\TC = TCj) 

In the special case where the loss value, l(i,j), corresponding to a mistaken 

classification is 1, then the associated total loss, Loss(i), is simply the risk of incorrectly 

classifying the target. That is, 

I,(l)nkPr(Vel = v\TC = TCk) 
Loss(i)=PRi = k*\ 

2iijPr(Vel = v\TC = TCj) 

= Pr(TC±TCk\Vel = v) 

= \-Pr(TC = TCk\Vel = v). (30) 

In those cases where the Intelligence Officer can assign a loss value to mistaken 

classification, the value acts as a weight which adjusts the posterior risk in accordance with his 

beliefs about the importance of the target classes. In such a case, the classification which 

minimizes the posterior risk is the target classification assigned to the target. 
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c Classification Example 

Suppose the MAGTF is deployed in the desert, and the G-2 has assessed the 

distribution of target types in a portion of his Area of Interest as follows, based on order of battle 

information: 

TCp =0.1, 

*w = 0.5, 

JtT =0.4. 

The SCAMP has placed SIDs along an unimproved road in the Area of Interest. 

The sensors activate, and report a target velocity of 7.2 kph. Using the distribution of velocity by 

target type for an unimproved road (Appendix C), the Bayes' classification method will classify the 

target as given in Table 6. 

Target Probability 

Personnel 

Wheeled 

Tracked 

0.20 

0.44 

0.36 

Table 6. Target Classification Example. 

The current TRSS classification method will classify this target as Personnel. The 

Bayesian method shows that it is more likely that the target is Wheeled. Given the G-2 has 

assigned no specific loss value to misclassification, then the associated posterior risks are given in 

Table 7. 

Target Risk 

Personnel 

Wheeled 

Tracked 

0.80 

0.56 

0.64 

Table 7. Posterior Risk Example 
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In this case, the target classification rule will classify the target as Wheeled, since 

that classification minimizes the posterior risk. However, the G-2 might still be concerned about 

this classification, because the risk values for Wheeled and Tracked classifications are so close. 

Suppose that the he can assign loss values to miscalculation. For instance, the G-2 determines that 

classifying either a tracked or wheeled vehicle target as a personnel target will incur a relative loss 

of 10, and that classifying a tracked target as wheeled will give a loss of 5. All other mistaken 

classification retain a value of 1. Table 8 shows that the posterior loss value associated with each 

classification changes significantly. 

Target Loss 

Personnel 

Wheeled 

Tracked 

8.02 

2.02 

0.64 

Table 8. Posterior Loss Values. 

In this case, classifying the target as a Tracked vehicle will minimize the loss. 

That is the classification the revised method will make. 

3.        Column Length Estimate 

The principal cause for error in the current Sensor Formula estimator for column length is 

the use of incorrect sensor parameters. However, the formula for column length is itself biased, 

and removing this bias will improve the model's accuracy. 

a.        Expected Value 

Let the mean detection distance of the first sensor be denoted |x,, and let that of the 

second sensor be u^. Then the second order Taylor series expansion of LC about \im and u^ is 

LCt <<© - a*.+^]-(^) (Tm - ^>+G£) (7T- ^ 
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+T 
2d\lTT J (Tm - urm)2 - j^-f-J (Tm - \LTm)(TT- »„) 21 3 ■ .      * 

The expected value of LC is found by taking the expectation of the right-hand 

side. Note that the covariance of Tm and TT is zero, for when expressed in terms of Ä, it is of the 

form cov(X+ Y, X-Y), which equals zero. Evaluating the expected value of the terms, we find 

*q-[^)-*.^]+<4. [^ 
PH. ) <32> 

which, when evaluated in terms of the true column length and the sensor parameters, is 

E[Lc]=LC(l+ol) + (^+ii2)ol . (33) 

This is clearly a biased estimator of LC.  Correcting LC to produce an unbiased 
estimator yields LC': 

LC' = [LC-01^+^1+aly\ (34) 

Expressed in terms similar to the old model, and in terms of the sensor 
A 

observations and the sensor parameters, LC becomes 

^-teKsMi^ 
= V'.TT-.(L-2i)CDR (35) 

Equation 35 is the revised Sensor Formula's unbiased estimator of the target 

column's length. 

b. Variance 

The first order Taylor series expansion of LC about \tnA and u^ is 
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yields 

A 

Taking the variance of this result term by term yields the variance of LC, which is 

Stating this equation in terms of the true target length and the sensor parameters 

Var(LQ = a2 fti, + ^ +LC)2. (38) 

A A 

Correcting for the bias of LC, the variance of the revised unbiased estimator LC 
is therefor 

Var{LC>) = a2 (1 +a2
cy

2 (n, + ji2 +LC)Z . (39) 

A A 

As with var(F'), var(Z,C) is a function of the true value of the variable measured, 

as well as of the sensor parameters. Since ac
2 is inversely proportional to d, the variance of the 

estimate can be minimized, for any given value of LC, by the choice of sensor settings and the 

distance between sensors. 

c. Confidence Interval 

Confidence intervals for LC can be stated using Chebyshev's inequality, in the 
A 

same manner as was done for V: 

a2- 
Pr(IZC'-^|<0>l--^*l-a. (40) 

^PKl^-^l<Q>l-g-(1+CT^+^+£C)2,l-a. (41) 
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Pr{\LC>-LC\ < Ml+a^V.^+ZQJ > 1 -a. 
(42) 

Finally, using the same method as was used for the confidence interval around V, 

the (1-a) 100% confidence interval for LC is stated as 

Pr 
LC- JE 

2\-l 
1 + Mi+o?) 

<LC<—) & N   > 

VoT 

= l-a. 

(43) 

The confidence level for the true column length, based on a given observation, is 

found by substituting the observed column length and the sensor parameters into Equation 43. 

Continuing with the previous example, given a Wheeled target, detected by two sensors on the 

medium setting, which are 300 meters apart, if the observed column length is 240 meters, an 

approximate 90% confidence interval for LC is 

( 
240 ^0.067(65 + 65)^ 

v JÖJ 
240 + ^0.067(65 + 65)^ 

( \ 
j + 0.067 

<LC< \ yöT 

VöT 
1- 0.067 

o.i; 

4. 

(175.70 meters <LC < 338.56 meters). 

Number of Elements Estimate 

The estimate of the number of individual elements in a column, N, is a linear function of 
the estimate of the target's column length.  The modifications for this estimator are a combination 

A 

of the direct result of those made to LC, recognition of the fact that N+l objects in a column are 

required to form N intervals, and the fact that individual element length influences total column 

length. 
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a.        Expected Value 

Let Veh{ be a random variable which represents the length of a vehicle / in the 

target column. Let lnti be a random variable which represents the interval between the rth and the 

i+lst vehicle in the column. Then the length of a column containing N vehicles is 

LC = 2 (Veht +Inti) + Veh. 'N 

= [(N- l)(\lreh + \Li„,)] + \lInt. (44) 

The expected values of Veh and Int can be determined from order of battle 

information. Let u^,,, = ( \iVlh + \iInt). From this, another expression for Nis 

._   LC + \LInt N= -~vzr- (45> 
A A 

Since E[LC] = \ivc = E[LC], we can substitute LC' into Equation 45 to form an 

unbiased estimator for N which is based on the sensors. This estimator is 

♦,    LC' + \iInt 
N=     \irrn,    ■ (46) 

which should be rounded up to provide a conservative integer estimate. When the ratio of \iInt and 

Hn,,, approaches one, this equation provides an estimator that is similar to the current model's. The 
A 

differences are LC, the unbiased estimate for LC, and the addition of one, to account for the 

vehicle forming the last interval. However, in most cases this ratio will not be sufficiently close to 

one. For example, the ratio for personnel moving in a common staggered double column would be 
2 

approximately 3, while the ratio for a column of standard U.S. 5- ton trucks moving according to 

current doctrine is approximately ||. In either case, failure to use u^,,, instead of just \iM will lead 

to estimates which are consistently higher than the true value of N. 
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b. Variance 

The variance of Nf is a linear function of the variance of LC, because only the 
expected values of Veh and Int are used to form the estimator. Therefor, the variance of N' is 

Var(N') ■. f<J2
c(l+aly\Hi+H2+LC)^ 

V&« J (47) 

A A 

which, as for V and LC, can be minimized by the choice of d and the sensors settings used. 

c. Confidence Interval 

Chebyshev's inequality again serves as the tool for placing bounds on the estimate. 
» » 

As with the LC , the variance of N' is based on the actual column length, Ic, which itself is a linear 

function of n. Using Equation 47 for var(W), Chebyshev's inequality states 

Pr(|JV'-^J<0>l-^*l-a. (48) 

a2- 
=>Pr(\N'-N\<t)>l--!f*l-a. (49) 

^A-^gc(1+g'r'(f"+ti2+ZC))>l-a 
U »""J* J~ (50) 

The lower bound of the confidence interval is 

N'   v^°c(^+\i2+LC) 

Gc(\ii+\i2)      , ac LC N'-N<    ve"*^w     + 
(1 + a2

c) \xTlnt Ja    (1 + a2
c) u.r/n( Ja 

(1 + a2
c) um,, Ja (1+CT?) Mr/n, ytT 
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Now, inverting Equation 45 to find LC in terms ofW, 

VV   - — 7- *—■ < 7/+ U.TM [N- £— 
(l+a*)^ Ja ^""^ »Tint K(l+ol) Print Ja 

PTInt Ja 
Np Tint 

2\-\ \ Qc (l+qg) 
-M^/nr 

2\-l 

tf'- ac(l+gg)-1(Hi+H2)]| ^ rocQ+og)-1] 

1 + V-Tfot 

2\-l gC  (1+CTc) 

Prim Ja 

<N. 

(51) 

Similar steps will find the upper bound of the confidence interval, which is 

N' + 

N< 

qc(l+q?)-1(lii+H2))       (acd+alY1) 
PTInt JÖL 

V-Int 

PTInt JÜ 

l-Hr/n; 
qc (l+ag)-r 

,    M-77/ir TOT    , (52) 

As an additional conservative measure, the lower bound of the confidence interval 

should be truncated to the next lowest integer, and the upper bound should be rounded to the next 

highest. In continuation and conclusion of the example, we will use Equations 46, 51 and 52, with, 

since our target was classified as a Vehicle, pInt = 50 and u^ = 58, to find 

0.067(65 + 65) 

58VÖT 
+ 50 0.067 

,58 JOT, 

1+58 

( \ 
0.067 

,58 JOT, 

<N, 
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and 

5 + 

N< 

0.067(65 + 65) 

58 JÖJ     t 

50 0.067 
,58 /öX 

1- 58 0.067 
I 58 TOT, 

which yields the 90% confidence interval that 

(3<AT<7). 
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V. CONCLUSIONS 

A.        SUMMARY 

1.        Current Sensor Parameters 

It is clear that the values currently used by the Sensor Formula for average detection 

distance are in error. The experiment that was conducted shows that the values actually 

experienced by operators using the TRSS system are much, much less than those stated in the 

Operator's Manual. Nonparametric tests on the data confirm this. Although only one soil type was 

tested in this experiment, previous work has shown that the detection distance will vary by soil 

type. The experiment also confirmed that detection distance is also affected by target class, and 

that in the case of the Wheeled class, it may also be affected by different vehicle types. 

Most surprising of all was the implication that most of the variance in detection distance 

was inherent in TRSS itself. Theoretically, a single, stationary geophone should detect the seismic 

signature of a moving target at a generally uniform distance, especially if the target approaches the 

sensor from the same direction and at the same velocity. Not only was it found that there was a 

great deal of variation between sensors detecting the same target, but that there was a great deal of 

variation in the detection distances of the same sensor. Neither the slight variations in target 

velocity, nor the possibility of environmental noise, were enough to explain the large range of 

detection distances experienced. 

It is suspected that the variation is due to the delay times built into TRSS itself. However, 

the sensors could not be tested separately from the monitoring system. Perhaps this explains the 

difference between these results, and those experienced by the Waterways Experiment Station. 

Their experiment used SID data filtered through scientific monitoring equipment, and had the 

benefit of scientific geophones to use as comparisons. Nevertheless, the SMS is the system which 

is used operationally to monitor the sensors, so the sensor parameters must be defined as they are 

interpreted by that system. 

The table below provides the recommended sensor parameters, for the target classes 

indicated, when the targets are moving cross country over fine, sandy soils. 
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Recommended Sensor Parameters 

Low Sensitivity Medium! sensitivity 

Target H                   a H a 
Class 

Personnel 

Wheeled 

Tracked 

18 18 25 15 

35 15 65 20 

120 30 175 35 

All values given in meters. 

Table 9. Recommended Sensor Parameters. 

2.        Current Classification Rule 

The danger in classifying targets based on a simple rule is obvious. There are many 

situations in which vehicles may move slower than 9 kph, but, as it currently stands, TRSS will 

never detect them. The current rule can be improved to take into account slow moving vehicles. 

The use of Bayes' Rule is common to classification problems, and even REMBASS uses a version 

of it. The sensor parameters have a small impact on this rule, since in even the most extreme 

cases, the variance of the velocity estimate is very small. It can be reduced even further, through 

the use of additional strings of seismic sensors, or by including infrared sensors into the algorithm. 

Further study needs to be done on the distribution of velocity given target type and movement 

conditions, but data on the distributions could be collected from almost any major military 

exercise. 

The classification rule presented in Chapter IV also provides the Intelligence specialist 

with a method to evaluate the strength of his classifications. The simple posterior risk calculation 

will give him a measure of how likely misclassification is, and, if he desires a more sophisticated 

measure, establishing a loss function for misclassification can provide insight into how dangerous 

it might be to incorrectly classify a target. In any event, it provides him with more information 

than does the current method. 
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3.        Current Sensor Formula 

It has been shown that all formulas currently used are positively biased. The largest bias 

is experienced when Tracked targets are detected, as they generate the highest variation in R. In 

the worst case, using two sensors on their medium setting placed 300 meters apart, the bias 

correction factor 1+a^ is only equal to 1.0131. It is suggested that sensors be placed no less than 

300 meters apart. However, even if they were placed 100 meters apart, the bias correction factor 

would still only be 1.1179. 

As previously mentioned, the most significant improvement occurs when proper sensor 

parameters are used, especially for CDR, which is always subtracted from the observations to yield 

the length estimate. One of the most frequent complaints about the current model is that it often 

drastically underestimates the column length. That is not surprising, given that, for example, the 

CDR for tracked vehicles in the Operator's Manual is 600 meters, while this study suggests that it 

should only be 350 meters. 

One of the most glaring errors in the current model is that it ignores variance in sensor 

capabilities. It is clear, from the results of the experiment, that there is a great deal of variance in 

their capabilities, and that it does affect the SMS's ability to describe targets. The revised model 

offered here, provides an analytical solution to this problem, and, when combined with the 

experimental results, provides a tool which can be applied immediately to enhance the target 

description algorithms. In addition to enhancing the ability of the SMS to make point estimates, 

for the first time a method is provided to place a confidence interval around that estimate. This 

step, by itself, will improve the utility of TRSS. Now the users will have a conservative estimate, 

based on Chebyshev's inequality, of how good the information they are getting really is. 

A simple modification, which reduces the variation in the column length and number of 

elements estimates, is the use of the observation TT, instead of 7T1. This measure reduces the 

variation by a factor of 2, and requires no additional computational power. 

The issue of computational power is central to the sensor problem. Up until Phase V, 

many of the sensor calculations were performed by hand, and equations as complicated as those 

presented here were not readily usable. However, the Phase V SMS uses RISC based computers 

to interpret the sensor messages and to perform all calculations, and the methods presented here 

now become trivial. In those remote cases where the algorithms must still be performed manually, 
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the old formula will still provide acceptable answers, but only as long as the correct sensor 

parameters are used. Even in those cases, use of TT will still serve to reduce variance. 

Finally, it has been shown that the number of elements estimate can be enhanced by 

calculating the average interval differently. Including the average length of an element, as well as 

the average interval between elements, provides more accurate information. Data regarding the 

length of vehicles is readily available, and the average interval is discernible from many doctrinal 

publications. 

B.        RECOMMENDATIONS 

1.        More Sensor Experiments 

The experiments conducted as part of this study were restricted by resources to a limited 

number of target types, a single velocity per target type, and to a single soil type. In a sense, the 

variation observed in a single configuration of the experiment can be attributed only to the time 

delays inherent to TRSS, because each target class traveled at a unique velocity, so the individual 

effects of those two factors can not be estimated. In order for the Marine Corps to construct a 

database of sensor parameters which will be usable worldwide, more data should be collected. 

a.        Format 

Future experiments should be conducted so that both the arriving and departing 

detection distances can be observed. Equation 4 provides the method for calculating the arriving 

detection distance. The following equation will calculate the departing distance: 

rtj = l&i)2+(vj[tfl-tjo]-l)2, (53) 

where tfl is the last time the sensor activated, and / is the length of the target (wheelbase, if only a 

single vehicle is used). More accurate observations on tj0 may be collected if infrared sensors are 

placed to record the time the target passes each seismic sensor. Placing the sensors within one to 

three meters of the test track will ensure that any extremely short detection distances are recorded. 
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b.        Treatments Desired 

In addition to data regarding the overall effects of differing soil types and target 

classes on general sensor performance, it is also necessary to collect data on the variance between 

individual sensors. Once basic parameters have been established, convoy targets and columns of 

mixed target classes should be investigated to determine the detection capabilities against mixed 

targets. A full analysis of variance could be carried out for each experiment, to determine which 

factors have the most impact on sensor capabilities. It is relatively inexpensive to conduct 

detection distance experiments, and it would enhance a SCAMPs operational capability if they 

knew the individual parameters of each of their sensors. 

2.        Implement Revisions 

The following section contains specific recommendations to enhance the Sensor Formula 

and TRSS capabilities. 

a. CDR 

Replace the values for average detection radius in the current Operator's Manual 

with more realistic figures. Reports from users, and the results of this experiment, indicate that 

they are in error. Presently, the Sensor Formula consistently underestimates length and number of 

elements because of these distances. Conduct additional tests to determine the effects of other soil 

types and velocities on the sensor parameters. 

b. Classification Rule 

Conduct additional investigations to determine the velocity distributions for the 

various target classes, then implement the classification rule given in Equation 28. Provide 

additional training to Intelligence personnel so that they can better estimate the a priori distribution 

of target classes. 

c. TTvsTTl 

Use the variable TT, as given in Equation 13, in place of 7T1. This requires only 

a very slight modification to the current SMS program, and by itself, will reduce the variance of 

LC' by a factor of 2. 
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d. Sensor Formulas 

As soon as sufficient data has been collected and analyzed, replace the current 

sensor formulas with those found in Equations 19, 35, and 46. Given the sample variances 

experienced in this experiment, adjustment due to the use of the bias correction factors will be 

slight, but if a combination of effects is found for which the variance is much greater, the effect 
may be drastic. 

e. Message Format 

Revise the current Sensor Report format so that it states the posterior distribution 

of target classes, as well as the target description for each class. The target description should 

include the confidence intervals, and the associated probabilities, for all estimates given. These 

measures of how good the estimates are, often provide as much information as the estimates 

themselves. 

/ IRID Reliability 

The failure rate of the IRIDs was unacceptable, especially considering the benign 

environment in which they were employed. They also require operational testing. As it is, it 

appears that the SIDs provide more reliable information than did the IRIDs, and at much less the 
cost. 

g. T{ from data, not screen 

The errors inherent to SMS are bad enough, without inducing additional operator 

errors. The screen resolution of the SMS is too low to rely on operator's ability to measure cursor 

location to determine TT and Tm. The SMS interface should be modified so that it extracts the 

observed times directly from the sensor message data base. 

C.       CONCLUSION 

The objective of this study was to determine if the current sensor algorithm could be 

improved, and to suggest enhancements that would provide better information to the operational 

commander.   It has been found that the Sensor Formula can, indeed, be improved, especially in 
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light of the sophistication of TRSS Phase V, and can again become an important, and trusted, tool 

in the Intelligence analysts toolbox. 
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APPENDIX A.     THE TACTICAL REMOTE SENSOR SYSTEM 

[Extracted from TRSS Operator's Course (Ref. 6).] 

INTRODUCTION TO THE TACTICAL REMOTE SENSOR SYSTEM (TRSS) PHASE V 

1. In order to effectively employ the TRSS, we need to gain a working knowledge of the 

equipment's characteristics/capabilities, and what equipment makes up the system. TRSS Phase V 

consists of a suite of remotely monitored, unattended ground sensors that detect activity, relays that 

provide a long range data transmission capability, and monitors that receive and display the data. 

In the TRSS Phase V, target detection is accomplished primarily with seismic sensors. Confirming 

sensors are used to assist in verifying target presence and in identifying target characteristics. The 

Phase V Tactical Remote Sensor System provides: 

Continuous, all weather detection 

Location determination 

Activity monitoring in a given area 

The ability to use a variety of emplacement & detection techniques 

Monitoring of hostile & friendly movements 

A capability to record data that can be stored/evaluated at later date. 

a. What is the AN/GSQ-257 Unattended Ground Sensor Set (UGSS)? What equipment 

makes up the set? The UGSS is a suite of unattended sensors that detect activity through use of 

various techniques. They transmit data to a Relay, Portable Monitor (PM), or Signal Data 

Recorder (SDR). Except for the ADSID, all the UGSS units are manpacked and hand emplaced. 

The ADSID is emplaced from helicopters or fixed wing aircraft. The following terms are used 

throughout the TRSS Phase V and must be understood by equipment operators. The UGSS uses 

detectors to sense target activity. When coupled to an ETU and a cable, these detectors make up a 

"sensor". Therefore, the term "sensors is used to indicate both a target detection and a message 

transmission capability. Thus, a detector, cable, and ETU, are termed a "sensor" or "sensor set" 

because, when they are electronically coupled together, they provide a complete target detection 
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and message transmission capability. The sensor messages may be remotely monitored through 

several methods. 

b. The following is the AN/GSQ-257 UGSS Equipment: 

Seismic Intrusion Detector (SID) 

Infrared Intrusion Detector (IRID) 

Auger 

Tripod 

Magnetic Intrusion Detector (MAGID) 

Air Delivered Seismic Intrusion Detector (ADSID) 

ADSID Practice Round 

Encoder Transmitter Unit (ETU) 

Sensor Cable 

c. The following is the additional equipment that is included in the Tactical Remote Sensor 

System (TRSS): 

Relay 

Portable Monitor (PM) 

Sensor Mobile Monitor System (SMMS) 

Sensor Monitor System ( SMS ) 

2. Encoder Transmitter Unit (ETU). All of the detectors, except the ADSID, require an external 

transmitter to encode and transmit the sensor data. An Encoder Transmitter Unit (ETU) was 

developed specifically for this purpose. The ETU is used in conjunction with the hand-emplaced 

sensors. 
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CHARACTERISTICS OF THE ETU: 

The ETU is a hand carried, sealed unit that provides encoding and transmission functions for the 

detectors that sense various physical phenomena. It is small (length 5.88 in/width 5.55 in/ height 

3.38 in), lightweight 4.0 lbs. with batteries), and simple to program/setup for field use. 

FUNCTIONS OF THE ETU: 

The ETU accepts input signals (raw activation data) from the connected detectors (SID, MAGID, 

IRID), processes and encodes the data according to TRSS message format, and transmits the 

sensor messages. The main function of the ETU is to be the data Encoder/Transmitter and the 

power source for the SID, MAGID, and IRID. The ETU utilizes an omni-directional antenna (with 

a right angle connector). In order to properly function, the uninsulated portion of the antenna must 

be kept above the ground. In addition to transmitting sensor messages, the ETU transmits a 

state-of-health message approximately every 22 minutes to inform the monitoring activity that it is 

still in an operating condition. The ETU also has the ability to advise monitoring activities that it 

being moved or tampered with. If the ETU is tilted more than 30 degrees (tampering), it will send a 

tilt message, rather than a proper sensor message, every 12 seconds. These messages will continue 

until the ETU is shut down, righted and reset. If the ETU is righted, but not properly reset, it will 

send tilt messages when further activations occur. 

CAPABILITIES OF ETU: 

The ETU is a battery powered unit that receives activation data from different detectors. It 

processes and encodes raw data into the TRSS sensor messages, and transmits the messages to 

monitoring equipment. The operating life of the ETU is user selectable, and ranges from 10 

minutes to 60 days (based upon the life of the batteries, and the end-of-life (EOL) switch setting on 

the ETU). The ETU is capable of continuous operation for a minimum of 30 days in temperature 

ranges from -22°F to +149°F. 
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LIMITATIONS OF THE ETU: 

The ETU's life is limited by its battery power. Its messages are susceptible to jamming, either 

intentionally or unintentionally. The attached detectors have no target discrimination capability 

(they will sense flowing water; metal objects, such as a bridge; sunlight; etc.), so the ETU will 

transmit messages that are based upon occurrences of environmental influence. 

3. Seismic Intrusion Detector (SID). The SID is the primary hand emplaced detector in the TRSS. 

CHARACTERISTICS OF THE SID: 

The SID is a small (length 2.80 in/width 2.38 in/height 1.64 in), lightweight (0.6 lbs), sealed 

detector that reacts to minute seismic vibrations in the ground. It contains a cable receptacle and a 

sensitivity switch with ranges of LOW, MEDIUM, and HIGH. 

FUNCTIONS OF THE SID: 

The function of the SID is to detect seismic vibrations in the ground and send signals to the ETU 

when certain vibration levels are detected. 

CAPABILITIES OF THE SID: 

The SID is capable of detecting minute seismic vibrations in the ground and sending a pulse 

(signal) to the ETU for processing. 

LIMITATIONS OF THE SID: 

The SID depends upon the ETU for its power. The SID contains no discrimination circuitry and 

will therefore react to incidents of environmental influence such as heavy rains, high winds, aircraft 

generated vibrations, etc. 
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4. Infrared Intrusion Detector (IRID). 

CHARACTERISTICS OF THE IRID 

The IRID is a small (length 5.52 in/width 3.38 in/height 1.91 in, lightweight (1.2 lbs), sealed 

detector that reacts to changes in temperature relative to a constant ambient background. It detects 

motion left-to-right and right-to-left, dependent upon the portion of the field of view that the target 

first entered. The IRID contains a cable receptacle and a sensitivity switch (containing HIGH, 

LOW, and STANDBY settings). 

FUNCTIONS OF THE IRID: 

The IRID is a confirming detector that senses changes in ambient temperature within its field of 

view relative, to the constant background temperatures. It confirms direction based upon the 

portion of the field of view that was entered first, and it can be used in determining target count. It 

sends this information to the ETU for further processing. 

CAPABILITIES OF THE IRID: 

The IRID is capable of detecting minute changes in temperature within its field of view, relative to 

the constant background temperatures. It can also be used in counting the number of objects 

passing through its field of view. The IRID then reports this activity to the ETU for further 

processing and sensor message transmission. 

LIMITATIONS OF THE IRID: 

The IRID depends upon the ETU for its power. The IRID has no discrimination capability; 

therefore, it cannot distinguish the difference between vehicles, personnel or animals that pass 

through its field of view. 
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5. Magnetic Intrusion Detector (MAGID). 

CHARACTERISTICS OF THE MAGID: 

The MAGID is a small (length 6.10 in/width 2.50 in/height 1.57 in), lightweight (0.9 lbs), sealed, 

dual axis magnetometer that detects changes in the earth's magnetic field. These changes are 

caused by the movement of ferromagnetic materials, such as, vehicles or personnel carrying 

weapons. (NOTE: The MAGID can be effected by the presence of ferromagnetic materials whether 

they are moving or stationary. This is an important consideration in the emplacement of the 

MAGID.) The MAGID can distinguish the difference between targets moving from left-to-right or 

from right-to-left within its detection radius. The MAGID contains a cable receptacle and a 

sensitivity switch (containing HIGH, LOW and STANDBY settings). 

FUNCTION OF THE MAGID: 

The MAGID is a confirming type detector that detects changes in the earth's magnetic field caused 

by the movement of ferromagnetic materials within its detection radius. 

CAPABILITIES OF THE MAGID: 

The MAGID is capable of detecting ferromagnetic materials by sensing changes in the earth's 

magnetic flux lines within its detection radius. Determination of the direction of movement, relative 

to the MAGID, is accomplished by a dual axis magnetometer. 

LIMITATIONS OF THE MAGID: 

The MAGID is dependent upon the ETU for its power. The MAGID contains no target 

discrimination capability. It will therefore react to environmental influences such as lightning, 
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electrical transmission lines (whether buried or overhead), and other events which cause magnetic 

flux line variations. 

(NOTE: Water lines are unique in that they will affect both the SID (flowing water in pipes), and 

the MAGID (metal pipes).) 

6. Air Delivered Seismic Intrusion Detector (ADSID) 

CHARACTERISTICS OF THE ADSID: 

The ADSID is an aircraft delivered, ballistically packaged, self contained, seismic sensor that 

detects minute vibrations in the ground. It is a "dart-shaped" device designed to penetrate the earth 

upon impact, leaving its antenna above ground level. The ADSID has its own power, detection, 

encoding and transmission capabilities. The ADSID contains controls for setting its detector 

sensitivity, sensor identification number, transmission channel and end-of-life setting. The ADSID 

itself is a true "sensor", since it contains both a detector and a transmitter. 

FUNCTION OF THE ADSID: 

The function of the ADSID is to detect minute seismic vibrations in the ground caused by vehicles 

or personnel. It also provides a state-of-health message approximately every 22 minutes to inform 

the monitoring personnel of its operational condition. 

CAPABILITIES OF THE ADSID: 

The ADSID is capable of being delivered by various aircraft, such as, fixed wing, rotary wing, and 

unmanned aerial vehicles. The ADSID can detect minute seismic vibrations in the ground, process 

and encode this information, and transmit sensor messages. The ADSID sends a state-of-health 

message approximately every 22 minutes to inform monitoring personnel of its condition and can 
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be programmed for a specific end-of-life or shut-down time (from 2 to 30 days in two day 

increments). 

LIMITATIONS OF THE ADSID: 

The ADSID's operating life is limited by its battery power. The ADSID is a ballistic penetration 

device that can be damaged by striking rocks, tree limbs, etc., during implant operations. The 

ADSID has no target discrimination capability, and it will detect and report environmental seismic 

events that may not be of interest to the sensor monitoring personnel. 

7. Sensor Cable. The Sensor Cable is a flexible multi-conductor cable that couples either the SID, 

IRID or MAGID to the ETU. This cable provides power to the detector(s) and carries sensor 

activation data to the ETU for encoding and transmission. The Sensor Cable is hand emplaced in 

the ground and is waterproof. 

8. AN/USQ-121 Portable Monitor (PM). The Portable Monitor is a hand-held, portable Radio 

Frequency (RF) receiver/display unit. The PM receives, demodulates, and decodes sensor 

messages. It displays the sensor identification number (ID) and a sensor message symbol on any 

one of the 599 TRSS Phase V message channels. It also provides an adjustable audio tone that 

"beeps" when messages are received. The PM is used primarily to confirm the proper operation of 

the sensors, and to determine the detection radii of the detectors during sensor implant. It monitors 

sensor activation responses by displaying the sensor ID and message symbol, whenever a valid 

message is decoded. The unit can also indicate that alarm messages are received from the United 

States Army's Remotely Monitored Battlefield Sensor System (REMBASS) sensors. 

9. RE-1162/U Relay Assembly. The Relay is a multiple channel, Very High Frequency (VHF) 

and/or Ultra High Frequency (UHF) communications receiver/relay. The Relay extends the range 

of the TRSS sensors, and it enables communications between sensors and monitors when 

communications via line-of-sight is prevented by terrain. The Relay can operate in both real-time 

and non-real-time modes, and it can be remotely commanded to change modes, channels, etc., after 
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emplacement. One or more CY-8680/G Battery Boxes are required for operation of the Relay. 

These Battery Boxes may be piggy-backed together to extend the Relay's operating life. (NOTE: 

THE UHF TRANSMISSION CAPABILITY IS NOT A CURRENT CAPABILITY OF THE 

RELAY.) 

10. AN/MSC-XXX Sensor Mobile Monitor System (SMMS). The SMMS is a mobile monitoring 

station for receiving, processing, storing, retrieving, and displaying TRSS sensor activation data. It 

consists of a Sensor Monitor System (SMS), AN/USQ-66B(V), mounted on a High Mobility 

Multi-purpose Wheeled Vehicle (HMMWV). The SMS is environmentally controlled and houses 

the equipment required to receive and process the TRSS message data. The equipment contained 

within the SMS includes two RO-376B/USQ Signal Data Recorders (SDR), two VGA color 

monitors that are used to display sensor activation data and video images, and two 24 pin dot 

matrix printers for data analysis, report preparation, and video image printing. In its eight channel 

configuration, the SMS can monitor, decode and display 1,008 sensors in the TRSS Phase V, or 

the US Army's Remotely Monitored Battlefield Sensor System (REMBASS) formats. In its normal 

operating mode, a self contained, diesel powered generator provides power for the SMS equipment, 

including the environmental control unit. The SMS can also be powered by 120/208 VAC, 3-phase 

commercial power, or by 120 VAC 60 Hz single phase power (120 VAC power will not operate 

the environmental control unit, however). 

11. Technical Characteristics of the Tactical Remote Sensor System. 

Frequency Range The TRSS operates in the 138  -  153  MHz 

frequency range. 

Channel Spacing Each channel within this frequency range is 

spaced 25 kHz apart. 

Number of channels The total number of frequencies available within 

this bandwidth is 599. 
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Operating Temperature Range The operating temperature range for the TRSS 

Phase V is from -22° F (-30° C) to + 149° F 

(+65° C) 

Operating Altitude The altitude parameters for the TRSS is from O 

feet above mean sea level (AMSL) to 15,000 feet 

AMSL. 

Message Type The TRSS uses a standard 20 or 29 BIT message 

format. 

The TRSS equipment requires radio frequency line-of-sight (direct or relayed). 

REFERENCES: 

l.FMFM 3-22-3 

2. TM 07754B-10 

3. TM 07726B-10 

4. TM 09632A-14&P 

5. TM 08236B-10 
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TRSS Components: 
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APPENDIX B.     FUNCTIONS OF DETECTION DISTANCE 

The TRSS Sensor Management System (SMS) reports seismic sensors activations by 

recording the time at which the sensor's Encoder Transmitter Unit (ETU) sent the activation 

message. The activation messages from a single sensor will always be at least 12 seconds apart, 

even if the sensor is continuously activated, due to an inhibit time built into the ETU. The times 

reported by a sensor, T„ and the functions of the reported times, Tm and TT, are functions of the 

sensor's detection radius, the target's velocity, the target's length, and the distance between 

reporting sensors. Figure 18 depicts the relationships between the T{, the R, and the sensors, and 

serves as a reference for the rest of this appendix. 
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Figure 18. Sensor Observations and Their Relation to Detection Distances. 

Throughout this problem, target columns are assumed to be moving in a direction parallel 

to a line drawn through the positions of the two sensors, and sufficiently close to that line so that 

their distance away from the line does not affect the sensor observations. The variables and 

parameters are defined as follows: 

d distance between the sensors. 

LC       length of the target column. Assumed to be constant throughout the 

detection period. 

Rl        detection distance of the first sensor, against an approaching target. 

R2        detection distance of the first sensor, against a departing target. 

R3        detection distance of the second sensor, against an approaching target. 
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R4 detection distance of the second sensor, against a departing target, 

s, location of the first sensor. 

s2 location of the second sensor. 

Tl time target is first detected by the first sensor. 

T2 time target is last detected by the first sensor. 

T3 time target is first detected by the second sensor. 

T4 time target is last detected by the second sensor. 

V velocity of the target column. Assumed to be constant throughout the 

detection period. 

A.       J. AS A FUNCTION OF R} 

All times are expressed in minutes. The detection period begins when the target is first 

observed by the sensors. This is defined to be Tr T, serves as the base time for all other 

observations. Therefore, using the time-distance-velocity relationship, the other observed times 

are as defined below. 

rp    _ rp R\ +/V2 +LC 
li-lx+  (54) 

rp rp R\   +U — R.I r3-r1 + —-—. (55) 

rp      rp   , Ri+d + RA+LC 
7*4  =  7-1+  y  (56) 

Now the functions of observed time, which are required for target classification and 

description, can be defined in terms of the sensor capabilities and the true state of the target. 

B.        Tm AS A FUNCTION OF R 

Tm is defined as the time required by the target to move from a point adjacent to s, to a 

point adjacent to s2. This distance is defined as d, and is recorded when the sensors are placed. 

The operators know this distance when they use the Sensor Formula. All length values are 

expressed in terms of meters. 
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Tm- T,M)]JTlM) 

U + Ti-Tz-Tx 

= i[(ri + Rr+d+R4+LC^ + ^ + ^±^3) 

-( 
-m + RI+R2+LC\ 

)-(Ti)] 

Rx-R2-Rj+R4 + 2d 
2V (57) 

Equation 57 serves as the basis for the velocity estimate, V1, and also plays an important 

role in the column length estimate, LC. The expectations of this random variable are required for 

both estimates. It is assumed that the both the arriving and departing Rj for the same sensor are 

identically and independently distributed random variables. Furthermore, the distributions of the R 

corresponding to s, are independent of those corresponding to s2. Recalling that V is constant 

during any given observation period, this implies that 

E[Tm} = ± (58) 

and 

VaATm)-^, (59) 

where a2
k is the variance of the R pertaining to sk.   If both sensors are placed in the same soil 

composition and set at the same sensitivity setting, the distributions are also identical, and therefore 

the variance reduces to 
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Vartjm) = Z±. 
V2 (60) 

C.       7T AS A FUNCTION OF R 

TT is defined as the mean total time the target is detected by the sensors. In the old Sensor 

Formula, only the total detection time of one sensor was used, and this was called 771. However, 

use of the mean detection time is a variance reduction technique, which will improve our estimation 

of the target column length. TT replaces 7T1 in all sensor calculations. TT is defined as 

Tr_(T2-Ti) + (T4-T3) 
2 

= ^ + *,+yZC) _(Tx) + ^ + R^d+R4+LC^ 

"C T^^^M] 

Ri+R2+R3+R4 + 2LC 
2V (61) 

Recall that both LC and V are considered to be constant throughout the period of 

observation. The expected value of TT is 

t\TT\- , (62) 

where ^ is the mean of the R pertaining to sk, and its variance is 

Var(TT) = O) +a2 

2F2   ' (63) 

where a2
k is the variance of the Ä, pertaining to sk.  Note that Var(77) = Var(rm). This will be 

very useful when determining the estimates of V and LC.    If both sensors are on the same 

sensitivity setting, the expected value becomes 
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2ni +LC 
E[TT\ = , (64) 

and the variance becomes 

Far(77) = 
yi' <65) 

D.        7T/ TM AS A FUNCTION OF R 

TT The vanable — is the basis for the column length estimate. As a function of the R, and 
lm 

with respect to the target characteristics, Equations 57 and 61 show that this variable can be 

expressed as 

TT _R\ +R2 +R3 +R4 + 2LC 
Tm~ R1-R2-R3+R4 + 2d ' (66) 

Since this is a nonlinear function of the R, the expectations of the function can not simply 

be expressed as the function of the individual expectations. Chapter IV provides detail about the 

use of the propagation of errors method in detennining the expected value and variance of this 

ratio. 
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APPENDIX C.     DISTRIBUTIONS OF TARGET VELOCITY 

The target classification method used by the revised sensor formula requires prior 

knowledge of the distribution of target velocity, given target class. No previous studies of these 

distributions were found, so it was decided to conduct an initial investigation as an adjunct to the 

study of the sensor formula. The method used to collect data from which to estimate the 

distributions was a survey of experienced personnel. A preferable method would have been to 

observe how fast columns actually move under operational conditions, but the assets to collect such 

observations were unavailable. 

A.        SURVEY 

1.        Methodology 

A survey of US Army and Marine Corps officers with operational and tactical experience 

was conducted at the Naval Postgraduate School. Each respondent was asked to provide his best 

estimate, based on his experience of having traveled in or organized movement columns, of how 

often a column of a particular class would be expected to move in a certain velocity interval, for 

different movement conditions. The tactical situation was one in which enemy contact was 

possible, but unlikely. The column types presented were Personnel, Wheeled, and Tracked, and the 

movement conditions presented were Paved Road, Improved Road, Unimproved Road, and Cross 

Country. Each officer was asked to estimate the number of occurrences, out of 100 total, that the 

column would be moving at each velocity. 

2.        Results 

Once collected, the data represented the respondents estimates of the probability, p, that 

the velocity would fall into a specific velocity interval Velv Using this method, the distribution 

velocity, given target type and movement condition, is a multinomial distribution. The maximum 

likelihood estimate for each/?, was formed by the ratio of occurrences for a given interval with the 

total number of occurrences, and the results for each combination are tabulated below. Only 21 

responses were received, so this study only offers basic insight into the true distributions. No 

confidence levels or goodness of fit tests were conducted on this data because of this. 
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B. PAVED ROADS 

This movement condition describes movement on a paved concrete or asphalt surface, 

under clear, dry, daylight conditions. The terrain was considered to be rolling hills, with no steep 

ascents or descents. The wheeled column was described as a uniform mixture of heavy and light 

vehicles. The tracked column was described as a uniform mixture of tanks and armored personnel 

carriers. The personnel column was described as a column of 200-300 individual, moving in a 

staggered column. The results are provided in Table 10, and the shapes of the distributions can be 

seen in Figures 19 through 21. Velocity intervals are given in terms of miles per hour. 

Velocity 

Interval 

VT{V\TQ 

Personnel 

— Paved Road 

Target Class 

Wheeled Tracked 

0-2 

2-4 

4-6 

6-8 

8-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35^t0 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

0.1400 0.0005 0.0005 

0.4754 0.0000 0.0000 

0.3043 0.0005 0.0005 

0.0744 0.0005 0.0031 

0.0095 0.0014 0.0302 

0.0000 0.0124 0.0599 

0.0000 0.0438 0.0938 

0.0000 0.0671 0.1901 

0.0000 0.0929 0.2120 

0.0000 0.1248 0.1875 

0.0000 0.1514 0.0990 

0.0000 0.2367 0.0922 

0.0000 0.1738 0.0313 

0.0000 0.0624 0.0000 

0.0000 0.0262 0.0000 

0.0000 0.0052 0.0000 

0.0000 0.0005 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

Table 10. Target Velocity Distributions — Paved Roads. 
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Figure 19. Velocity Distribution: Personnel Target, Paved Road. 
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Figure 20. Velocity Distribution: Wheeled Target, Paved Road. 
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Figure 21. Velocity Distribution: Wheeled Target, Paved Road. 
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C.        IMPROVED ROADS 

This movement condition describes movement on a graded gravel or packed clay surface, 

under clear, dry, daylight conditions. The terrain was considered to be rolling hills, with no steep 

ascents or descents. The wheeled column was described as a uniform mixture of heavy and light 

vehicles. The tracked column was described as a uniform mixture of tanks and armored personnel 

carriers. The personnel column was described as a column of 200-300 individual, moving in a 

staggered column. The results are provided in Table 11, and the shapes of the distributions can be 

seen in Figures 22 through 24. Velocity intervals are given in terms of miles per hour. 

Velocity 

Interval 

Vr(V\TC) - 

Personnel 

Improved Road 

Target Class 

Wheeled Tracked 

0-2 

2-4 

4-6 

6-8 

8-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40^5 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

0.2000 0.0005 0.0005 

0.5332 0.0000 0.0000 
0.2294 0.0029 0.0058 
0.0374 0.0081 0.0178 
0.0033 0.0310 0.0541 
0.0000 0.0667 0.1024 

0.0000 0.0895 0.1549 

0.0000 0.1333 0.1921 
0.0000 0.1943 0.1654 
0.0000 0.2086 0.1003 
0.0000 0.1129 0.1081 
0.0000 0.1081 0.0777 
0.0000 0.0262 0.0157 
0.0000 0.0176 0.0052 
0.0000 0.0005 0.0000 

0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

Table 11. Target Velocity Distributions - Improved Roads. 

82 



Personnel - Improved] 
05 

I   I  I   I   I   I I 

0-2     4-6     8-t)   6-20 25-30 35-40 45-50 55-60 65-70 75-80 

Velocity Intervals (mph) 

Figure 22. Velocity Distribution: Personnel Target, Improved Road. 
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Figure 23. Velocity Distribution: Wheeled Target, Improved Road. 
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Figure 24. Velocity Distribution: Tracked Target, Improved Road. 
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D. UNIMPROVED ROADS 

This movement condition describes movement on a loose, earthen surface under clear, dry, 

daylight conditions. The terrain was considered to be rolling hills, with no steep ascents or 

descents. The wheeled column was described as a uniform mixture of heavy and light vehicles. 

The tracked column was described as a uniform mixture of tanks and armored personnel carriers. 

The personnel column was described as a column of 200-300 individual, moving in a staggered 

column. The results are provided in Table 12, and the shapes of the distributions can be seen in 

Figures 25 through 27. Velocity intervals are given in terms of miles per hour. 

Velocity 

Interval 

Pr(V\TQ - Unimproved Road 

Target Class 

Personnel              Wheeled               Tracked 

0-2 

2-4 

4-6 

6-8 

8-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

4<M5 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

0.2500 0.0005 0.0005 
0.5257 0.0010 0.0026 
0.2009 0.0062 0.0100 

0.0220 0.0297 0.0383 
0.0047 0.0708 0.0971 

0.0000 0.1053 0.1391 

0.0000 0.1890 0.2178 

0.0000 0.1962 0.1732 
0.0000 0.2033 0.1144 
0.0000 0.1081 0.0997 
0.0000 0.0565 0.0504 
0.0000 0.0273 0.0488 
0.0000 0.0057 0.0079 
0.0000 0.0005 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

Table 12. Target Velocity Distributions - Unimproved Roads. 
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Figure 25. Velocity Distribution: Personnel Target, Unimproved Road. 
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Figure 26. Velocity Distribution: Wheeled Target, Unimproved Road. 
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Figure 27. Velocity Distribution: Tracked Target, Unimproved Road. 
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E. CROSS COUNTRY 

This movement condition describes movement through lightly vegetated terrain, under 

clear, dry, daylight conditions. The terrain was considered to be rolling hills, with no steep ascents 

or descents. The wheeled column was described as a uniform mixture of heavy and light vehicles. 

The tracked column was described as a uniform mixture of tanks and armored personnel carriers. 

The personnel column was described as a column of 200-300 individual, moving in a staggered 

column. The results are provided in Table 13, and the shapes of the distributions can be seen in 

Figures 28 through 30. Velocity intervals are given in terms of miles per hour. 

Velocity 

Interval 

Vr(y\TQ - 

Personnel 

- Cross Country 

Target Class 

Wheeled Tracked 

0-2 

2-4 

4-6 

6-8 

8-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

4<M5 

45-50 

50-55 

55-60 

60-65 

65-70 

0.3500 0.0024 0.0127 
0.5045 0.0148 0.0280 
0.1297 0.0574 0.0598 
0.0105 0.1316 0.0492 
0.0005 0.1866 0.1180 
0.0000 0.1914 0.1852 
0.0000 0.1522 0.1937 
0.0000 0.1383 0.1862 
0.0000 0.0837 0.0603 
0.0000 0.0368 0.0407 
0.0000 0.0048 0.0370 
0.0000 0.0000 0.0238 
0.0000 0.0000 0.0053 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

70-75 0.0000 0.0000 0.0000 
75-80            [ 0.0000 0.0000 0.0000 

Table 13. Target Velocity Distributions - Cross Country. 
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Figure 28. Velocity Distribution: Personnel Target, Cross Country. 
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Figure 29. Velocity Distribution: Wheeled Target, Cross Country. 
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Figure 30. Velocity Distribution: Tracked Target, Cross Country. 
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F.        TRANSFORMING V FOR TARGET CLASSIFICATION 

The target classification method in Chapter 4 requires that the velocity distribution be 
A 

given in terms of observed velocity, V, not the true velocity, V. The transformation is made by 

multiplying the boundaries of the velocity intervals, given in the tables above, by the bias 

correction factor (Equation 18) specific to the sensors making the velocity observations. An 

example of such a transformation, using a Tracked target column moving on an Unimproved Road, 

is provided. In this example, two sensors, on medium setting, placed 300 meters apart, are being 

used to detect the target, so the bias correction factor is 

1 + aI + qj_i | 352+352 

2a2 2(300)2 

= 1.0136. 

and the resulting velocity intervals and corresponding probabilities are given below. 

Pr(^rC) -1 

Interval 

Jnimproved Road 

Tracked 

0-2.03 

2.03-4.05 

4.05-4.08 

6.08-8.11 

8.11-10.14 

10.14-15.20 

15.20-20.27 

20.27-25.34 

25.34-30.41 

30.41-35.48 

35.48-40.54 

40.54-45.61 

45.68-50.68 

50.68-55.75 

0.0005 

0.0026 

0.0100 

0.0383 

0.0971 

0.1391 

0.2178 

0.1732 

0.1144 

0.0997 

0.0504 

0.0488 

0.0079 

0.0000 

Table 14. Transformation Example. 
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